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BRIEF DESCRIPTION OF ACTION:

The proposed action is construction and operation of test facnities, and testing the

Advanced Solid Rocket Motor (ASRM) which will replace the motors currently used to

launch the Space Shuttle. Construction w111include (1) a barge/dock facility; (2) a test

firing stand and associated buildings and support facilities; and (3) access roads and a

transporter road to move the ASRM from the barge dock to the test stand. The test program

will consist of up to 4 tests per year for 30 years. The Final Environmental Impact

Statement (FEIS) and Record of Decision on the FEIS describing the potential impacts to

human health and the environment associated with the program and documenting first

the preference for and then the final selection of Stennis Space Center (SSC) as the test site

for ASRM were issued in March and April 1989, respectively. Since publication of the

FEIS, three factors have caused NASA to initiate additional studies regarding the potential

for health or environmental impacts associated with the ASRM program. These factors

are: (1) the U.S. Army Corps of Engineers and the Environmental Protection Agency

(EPA) agreed to use the same comprehensive procedures to identify and delineate wetlands;

(2) EPA has given NASA further guidance on how best to simulate the exhaust plume

from the ASRM testing through computer modeling, enabling more realistic analysis of

emission impacts; and (3) public concerns have been raised concerning short- and long-

term impacts on human health and the environment from ASRM testing. This

Supplemental Final Environmental Impact Statement (SFEIS) addresses each of these

factors.

PR_CEDh'IG P._C,E BLANK NOT FILMED





SUMMARY OF ENVIRONMENTAL EFFECTS:

The final ASRM test site selected reflects the minimum poss_le impact to the wetlands at

SSC. Where impacts to wetlands cannot be avoided, mitigation must be provided to the

extent poss_le. Wetlands temporarily affected by construction will be allowed to return to

their natural state. The determination of loss for wetlands permanently affected will be

based on the functions they serve, such as fish and wildlife habitat and flood control. The

functional values of such wetlands will be replaced. The improved predictions supported

by field observations of the exhaust plume dispersion indicated the ultimate concentration

at ground level of the products of concern (hydrogen chloride and aluminum oxide) would

be less than originally predicted in the FEIS. This assessment shows that potential
exposure to these exhaust products should not cause any adverse effects on humans. The

analysis provided in this SFEIS also supports the findings in the FEIS that, given the

naturally occurring conditions of the environment in the area of SSC, no harm to aquatic

species, wildlife, plants, sons, groundwater, or surface water as a result of ASRM testing is

SUBMITTAL DATE:

The Supplemental Final Environmental Impact Statement (SFEIS) was submitted to the

Environmental Protection Agency for the Notice of Availability to appear in the Federal

Register on or about August 17, 1990. The SFEIS will be released to the public immediately

after filing the document with the EPA.
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EXECUTIVE SUMMARY

PROJECTSUMMARY

Stennis Space Center (SSC) in Hancock County,

MS has been selected as the site for testing the

Advanced Solid Rocket Motor (ASRM), a rede-

signed motor for the Space Shuttle which will

greatly improve flight safety, reliability, and

performance. Testing the ASRM at SSC will

involve construction of (1) a barge/dock facility

on the existing Access Canal; (2) a test firing

stand and associated buildings and other anc_lary

supportf_c_ties;and (3)accessroads and a

heavy dutytransporterroad to move the ASRM

from thebarge dock tothe teststand.The test

areawillbe located6.5mnes from the nearest

community outsideSSC and about 2 mnes from

most ofthe workforce atSSC. No more than 4

motors willbe testedper year.

BACKGROUND: FINAL ENVIRONMENTAL
IMPACT STATEMENT (FEIS)

In March 1989, NASA issued the Final Environ-

mental Impact Statement (FEB) for the ASRM

program. The FEIS indicated NASA's preference

for SSC as the test site for ASRM and described

the potential impacts associated with the pro-

gram. The FEIS stated that ASRM testing would

not cause any significant impact to the environ-

ment or to the health of workers and the general

public who live in the vicinity of SSC. In concert

withthe NationalEnvironmental PolicyAct

(NEPA), NASA solicitedpublicinputand com-

ment duringthe EIS process.

BACKGROUND: SUPPLEMENTAL FINAL
ENVIRONMENTAL IMPACT STATEMENT

(SFEIS)

Since publication of the FEIS, NASA initiated

additional studies regarding the potential for

healthor environmentalimpacts associatedwith

the ASRM program. F'n-st,inlateMarch 1989,the

US. Army Corps ofEngineers and Environmental

ProtectionAgency (EPA) agreedto use the same

comprehensive procedures toidentifyand delin-

eatewetlands.Using theseguidelines,the EPA

evaluatedthe ASRM projectarea and determined

thatmuch ofthe designatedASRM testsiteis

wetlands. Given thisclassification,additional

wetlands studieswere conducted. Insupportof

the goals ofNEPA, NASA ismaking thisinforma-

tionavailabletothe publicas a Supplemental

FEIS (SFEIS). This SFEIS contains the revised

facility layout, descn'bes affected wetlands at SSC,

and explains mitigation plans for the affected

wetlands.

Further, since publication of the FEIS, documen-

tation of the plume dispersion predictions for the

Space Shuttle Redesigned Solid Rocket Motor

static test program used in the air emissions

permit in Utah became available. The prediction

or modeling method used in 1989 was recom-

mended by EPA Region 8 and reviewed and

concurred in by the State of Utah. That permit

action set the first regulatory precedent for

predicting dispersion of exhaust products from

solid rocket motors similar to the size and perfor-

mance characteristics of the ASRM. The predic-

tion method was a combination of the model used

in the ASRM FEIS to predict exhaust product

composition, quantities, and stabilization altitude

and dimensions of the exhaust cloud, followed by

a "puff" model, more familiar to the EPA, to

project dispersion of the exhaust products. The

revised prediction method was used to prepare

the Prevention of Significant Deterioration (PSD)

air emissions permit application submitted to the

Mississippi Bureau of Pollution Control. A

comparison of predicted impacts generated from

the method used in the permit application to the

FEIS is presented in the SFEIS.



Finally, the SFEIS directly responds to public
concerns raised subsequent to the release of the

FEIS. These include both short- and long-term
impacts of ASRM testing on human health,
aquatic species, wildlife, water, vegetation, and
sogs.

WETLANDS

Using the new federal guidance, EPA identified
how much of the site area would be classified as

wetlands. Because such a large portion of SSC is
wetland, it was impossible not to have the ASRM

test area affect wetlands. Therefore, a permit
called a =404 Permit" is required from the U.S.
Army Corps of Engineers prior to any construc-
tion activities occurring on the wetland areas. An
essential part of the decision to grant a 404 Permit
is a 401 Water Certification assessed and issued
by the Mississippi Bureau of Pollution Control.

Between January and June 1990, NASA modified
the initial ASRM site fac_ty design and refined
the road layout so the project would minimize the
physical and functional loss of wetlands. Using
this revised site design, construction or primary
impacts to wetlands, which represent permanent
loss, were identified. Construction of the ASRM
facnity will require clearing and filling a maxi-
mum area of 69 acres ofweflands. An additional

243 acres of wetland will only need to be cleared
of trees and other large woody species.

Wetlands have a number of important biological,
hydrological, social, and economic functions.
These functional values include flood control;

stormwater, sediment, and pollution control;
surface water supply; groundwater recharge/
discharge; providing fish and wildlife habitat; and

providing education, recreation, and open space.
The quality of a wetland is generally evaluated in
terms of the quality and importance of its func-

tions, and may not be related to its size. In
addition to identifying the types of wetlands that

would be affected or filled for the ASRM project,

further studies included an assessment of the

wetland's fimctional value. NASA sought to
minimize the overall impact to wetland areas, but
eapecially to the most valuable wetland habitats.
For the ASRM program, approximately 90 per-

cent of the affected wetland area is pine-savannah,
with the remainder primarily consisting ofbot-
tomland hardwood forest. The preliminary
functional value analysis of the wetlands to be
affected (filled) by this project are biotic and

hydrologic in character. The primary biological
function of the pine-savannah is wildlife habitat.
The principal hydrologic functions of the wet-
lands to be affected are flood storage and breakup
of storm flow. Both of these functional values

have been reduced by commercial forest manage-
ment of the area and construction of extensive

drainage ditch systems.

NASA will avoid all major pitcher plant concentra-

tions or bogs during construction because these
bogs are unique wetland communities which are

disappearingregionallyfrom the pine-savannahs

largelyasa result of commercial plantation
forestry. Some individual pitcher plantsscattered

throughout the site cannot be avoided. However,
by avoiding the major concentrations of pitcher
plants, NASA will help keep its commi_ent to
protecting this unique and diminishing habitat.

Mitigation or compensation for the wetland acres
that are filled will consist of three methods:

(1) restoration of the hydrologic functions by
fillingditches in pine-savannah areas andbuilding

low berms across selected drainage swales;
(2) augmentation of bottomland hardwood forest

coverfor w_dlife habitat in pine-savannah areas
by discontinuing pine forest management; and

(3) enhancement of the unique pitcher plant bog
habitat by controlled burning in selected areas.
The U.S. Army Corps of Engineers must approve
NASA's mitigation plan prior to issuance of the
required wetlands permit. The mitigation plan
would then be a condition (requiremen0 of the

permit.
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AIR OUAUTY

The revised modeling or prediction supported by

field observations of Space Shuttle solid rocket

motor firings in Utah indicates the ultimate

concentration of the exhaust products would be

lessthan originallypredictedinthe FELS. Each

testofan ASRM _ generate 127 tonsofhydro-

gen chloride(HCI),216 tonsofparticulates

(mainlyaluminum oxide),and lesseramounts of

water vapor,carbon dioxide,carbon monoxide,

nitrogenoxides,and aluminum chloride.The

totalamount ofaluminum oxide and otherparticu-

late(216tons)was revisedsubsequent toissu-

ance ofthe FEIS and priorto submission ofthe

PSD applicationinAugust 1989 because a propel-

lantcompositionof16 percentaluminum, and not

19 percentas specifiedinthe finalASRM con-

tract,was used inFEIS modeling predictions.In

addition,allchlorineforms such ashydrogen

chloride,monatomic chlorine,diatomicchlorine,

etc.,were totalledand collectivelymodeled as

hydrogen chloride,the acidform,inthe PSD

applicationand thisSFEIS. This more conserva-

tiveapproach,therefore,resultsinan increasein

the totaleffectiveamount ofhydrogen chloride

used to project potential impacts. The results of

this assessment confirm that potential exposure

to hydrogen chloride and aluminum oxide to both

workers and the public is projected to be well

below all federal and state regulatory standards

that have been determined to be protective of

human health and the environment.

To reduce the concentrations of exhaust products

that could fzll to the ground or exist in ground-

level air concentrations, NASA _ build a deflec-

tion ramp behind the motor. The ramp is de-

signed to keep soil from being caught up in the

exhaust plume and increasethe plume'srateof

movement and mixing inthe atmosphere. How-

ever,tobe conservativeinthe exhaust plume

dispersionmodeling,plume risepredictionswere

based onlyon heat risewithno benefitofredirect-

ingthe exhaust velocityupward. Inthe evalua-

tionof_est availablecontroltechnology,"a

number of other techniques for reducing the

ground-level concentrations of exhaust emissions

were evaluated, including both wet and dry

scrubbers. Because scrubber technology is not

sufficiently developed on a scale to be effective for
ASRM use, the deflection ramp in conjunction
with proper weather conditions was determined
to be the only feas_le q_est available control

technology."

The exhaust plume from an ASRM statictestw,11

risetoa cloud centerlinealtitudeinexcess of

10,000feet.The high humidity ofthe airaround

SSC w111allowthe exhaust cloud tostabilizeat

altitudeshigherthan indryer climates such as

Utah. Heat removal from a thermallybuoyant

cloud is a function of moisture in the air. The

higher the moisture in the air, the less heat that

can be absorbed for every 100 feet of altitude.

Therefore, an exhaust cloud at SSC must rise to a

greater height than itwould in Utah in order to
cool to a temperature equal to the surrounding

air.

Unless atmospheric conditions existed at the time

of firing that would create a raining cumulus

cloud, the exhaust plume-cloud would have no

continued source of saturated air and no continu-

ous updraR (two essential conditions necessary to

produce rain) after it reaches its final elevation.

Therefore, the exhaust cloud w_l not spontane-

ously produce a raining cloud. Weather condi-

tions required to form a raining cumulus cloud

can be monitored. This informationwillbe used

toensure thattestingisconducted under proper

meteorologicalconditions.

Inaddition,the afternoonmixing heightfor

Jackson,MS (4,261fee0 was used topredict

ground-levelconcentrationsofASRM exhaust

productsinthe PSD permitapplicationand this

SFEIS for two reasons. F'trst, the predominant

upper-level winds around SSC blow from west to

east or from southwest to northeast- Therefore,

the plume will be blown toward areas of higher

mixing heights than if it were blown to the south.

x_



Afternoon mixing heights of Jackson, MS are
approximately 1000 feet higher than those typical
of coastal areas such as Mobile, AL Second,

higher mixing heights produce higher ground-
level concentrations than lower mixing heights.

Using the higher Jackson, MS mixing height,
therefore, is a conservative assumption. A com-
plete description of weather conditions and

meteorological principles pertinent to the under-
standing of the behavior of the ASRM exhaust
plume in a humid climate is presented in the
SFEIS.

In this SFEIS, the test exhaust is modeled under
two conditions: (1) no _n for at least two to four

hours after test firing, depending on wind speeds
(the "expected" condition), and (2) rainfall one

hour after the test firing (the "unexpected"
condition). The second case is labelled "unex-
pected" because NASA is committed not to test

when rain is predicted within the next two to four

hours (depending on wind speed). This case
would only occur in the unlikely event that all
weather forecasting efforts break down. Model-
ing these unexpected conditions gives an esti-

mate of the worst poss_le impacts. The impacts
associated with each condition were assessed and

are discussed separately in the SFEIS. A sum-
mary of those impacts under both conditions
appears below.

sur_ce water as a result of the ASRM testing is

Scientificliteraturewas againreviewedand
several university and government researchers
were consulted concerning topics such as acid
rain effects on plants, the neutralizing capability
of local soils, and aluminum buildup in soils.

These investigations indicated that exposure to
the projected concentrations and deposition rates
of hydrogen chloride, aluminum oxide, and
aluminum chloride under the "no rain" condition

are below levels that can cause harm to plants or
decrease soil fertility. Therefore, there would be
no short- or long-term impacts to plants.

Surface water data were used to characterize

various water bodies (creeks, sloughs, bogs,
marshes, and wetlands) in terms of their acidity,

ability to neutralize additional acid, and presence
of aluminum. The data show the waters in and

around SSC to be slightly acidic, as expected in
southeastern swamps and wetlands. Under "no
rain" conditions, no measurable acid fallout is
expected and there would be no acidity impact to
surface waters from ASRM testing. Aluminum
concenWations are predicted to increase by very
small amounts, and not in sufficient quantities to
upset the existing natural balance of the surface
water.

ENVIRONMENT

"Expected" Conditions

The FEISstated that, giventhe naturallyoccur-
ring conditions of the environment or ecosystem

in the area, ASRM testing would not result in any
significant impacts to the environment. Using the

revised plume dispersion modeling results, the

SFEIS further evaluates the potential effects of
ASRM emissions on the environment in and

around SSC. This further analysis supported the
findings in the FEIS that no harm to aquatic
species, w_dlife, plants, soils, groundwater, or

Relevant studies of the effects of aluminum

compounds and hydrogen chloride on aquatic
species were thoroughly reviewed. Based on the

modeling and projected deposition patterns and
resulting concenwations of hydrogen chloride

and aluminum over present background levels, no
impact to aquatic species in the SSC vicinity is

Poss_le effects on wildlife and domestic animals

were also reevaluated using relevant scientific
literature and consultations with university and

government researchers. This assessment
indicates that projected ground-level air concen-

lrations of hydrogen chloride following testing of
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the ASRM are 100 to 200 times below the injury
level observed in research on small animals.

Aluminum oxide is projected to be deposited at
levels well below the irritation point for wildlife
and domestic animals, and will not be absorbed

through the skin.

The posdbility that ASRM testing might contami-
nate drinking water wells and/or damage water
wells due to vibrations created during testing was
also investigated. Scientific literature was re-
viewed again and local experts were consulted
concerning the local geology and groundwater
characteristics. This reevaluation confirmed that

ASRM testing will not affect groundwater quality
in the area. ASRM testing is not projected to

contaminate soils or surface water. In addition,
other naturally occurring factors exist to prevent
groundwater contamination from any source.
These include neutralizing of acid by the alkalin-
ity of the groundwater and presence of dense
sediments that prevent groundwater flow down-
ward to deeper aquifers.

While ground vibrations will result from ASRM
testing, measurements conducted during previ-
ous Saturn rocket tests at the site, plus modeling
of ASRM-generated ground w_rations show that

such ground w%rations w_qlbe very small. The

ground motion will be reduced to negl_le levels
within several hundred meters of the test stand,

thus avoiding impact on local drinking water
wells.

"Unexpected" Conditions

To understand the sensitivity of the environmen-
tal impact of ASRM testing, conditions beyond
what are ever anticipated to occur were assessed
and are described in the SFEIS. Under unex-

pected and unlikely rain conditions where all

weather forecasting efforts totally break down
and rainfall occurs soon after a test, most water

bodies would not be affected because they have
the ab_ty to handle additional acids without
changing their natural balance. This ability to

neutralize acid is referred to as buffering capacity.

For certain selected, small, shallow surface
waters in the vicinity of SSC, there could be short-
term effects from rain. These waters would
become more acidic for several hours or days,

during which time the additional acid would be
neutralized. If this condition were to occur,

adverse effects to fish and other aquatic organ-
isms would be evident. Increased acidity in small

drainages with little buffering capacity could
result in localized mortality of aquatic organisms.
Conditions at the Red Fish Hatchery near SSC-
were specifically considered and it was deter-
mined that there would be no effect on fish at the

hatchery. Plants would be affected by leaf spot-
ting. Aluminum concentrations are predicted to

be the same as in the "expected" conditions and

therefore are not projected to upset the existing
natural balance of the surface water in these

areas.

CUMULATIVE EFFECTS

In addition to looking at the poss_le impacts

from each single test firing, the long-term effects
of poss_le accumulation of deposited aluminum
oxide and aluminum chlorides from ASRM

testing were evaluated. Using the results of the

analysis for "expected" test conditions, the accu-

mulated deposition of these components for the

3D-year lifeof the program was calculated by
multiplying the quantity of deposited material
from each test by 120, a condition described in

the PSD permit application. That sum was then
distributed in all directions around SSC, accord-

ing to the percentage of time the wind blows to
the east, northeast, north, etc. Because the wind

usually blows to the east, most of the deposition
was predicted to occur to the east of the test
stand. The projected test schedule, however,

includes 8 tests in the first 2 years and 2 per year
thereafter.

The soils and surface waters will neutralize,

transform, and remove most of the deposited
material from each test more rapidly than the



material will build up due to the lime interval

between successive tests. Therefore, the cumula-

tive effects of a maximum of 120 tests over 30

years would be virtually negli_'ble on surface

water, groundwater, plants, soils, and aquatic

species.

The amount of HCI that would be produced

during each ASRM test was compared to the

existing level of acid in the atmosphere and the

annual emissions of acid gases from all sources

(industrial and private) to determine how much

ASRM testing would contribute to the existing

situation. The findings indicate that the HCI from

ASRM testing will contribute a very small amount

(less than 0.01 percenO to the total emissions of

acid gases from the re, on around Mississippi.

HUMAN HEALTH

The poss_ility of long-term effects of HCf, HCf

aerosols (mists), aluminum oxide, and aluminum

chloride was expressed by the public after the

release of the FEIS. The FEIS stated that there

would not be any significant impacts. The results

of modeling for the PSD permit application and
this SFEIS were then used to determine the

potential for risk. This assessment shows that

potential exposure to hydrogen chloride, alumi-

num oxide, and aluminum chloride in ASRM

emissions should not cause any adverse effects
on humans. .....

A typical human health risk assessment estimates

the types and concentration of contaminants;

analyzes how humans might be exposed to such

contaminants, and the extent and degree of such

exposure; determines whether the contaminants

are "toxic" and, if so, what level will not cause

adverse effects on a daily basis (i.e., levels which

EPA or other regulatory agencies determine to be

safe); and characterizes the potential for adverse

cancer and noncancer health effects to occur.

The human health assessment for ASRM follows

the basic approach of evaluating what compounds

or contaminants exist (in this case the exhaust

emissions) and determining whether or not

exposure would cause any adverse effects. Some

important modifications to a traditional risk

assessment were made because (1) none of the

ASRM exhaust products are cancer-causing, and

(2) it is not appropriate to estimate daffy doses

over a 7(_year lifetime because potential exposure

to ASRM test emissions lasts for a period of 10

minutes to 2 hours, four times per year. There-

fore, using the new plume dispersion modeling

data along with an analysis of potential chemical

interactions between three of the combustion

chemicals OtCI, aluminum oxide, and aluminum

chloride), the predicted chemical concentrations

were compared with the most appropriate air

quality standards and guidelines for short-term

and daily exposure. These standards and guide-

lines are dc_,eloped by federal and state authori-

ties and other specialized advisory groups to

protect human health.

Maximum exposure levels to exhaust products

will occur in the vicinity of the ASRM test stand.

The majority of SSC workers are located at a
distance at least 2 m_es from the test stand. Prior

to and during each ASRM test, all ASRM test

workers will be removed to safe distances or into

protective buildings. An acoustical buffer zone at

least 5 miles wide surrounds the test stand, and

the towns nearest the test site are all at least 6.5

miles away.

Maximum concenO-ations of HCL aluminum

oxide, and aluminum chloride, as well as levels

averaged over one hour and 24 hours, were

calculated at 0.6, 3, 4.2, 6, and 12 miles from the

test stand and then compared to federal and state

standards established to protect human health.

Maximum 24-hour average concentrations of HC],

aluminum oxide, and aluminum chloride emitted

as a result of each test would occur approximately -

42 miles from the rocket test stand. Based on

this analysis, concentrations of all three com-
pounds are projected to be well below established

standards and not harmful to workers or to the

public.
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The maximum HCfconcentrations from ASRM

testing fallwell below the levels documented to

cause adverse effects from either short- or long-

term exposures. To protect sensitive popuhtions

such as infants, children, the elderly, and people

with respiratory diseases from HCf emitted

during actual Space Shuttle launches, the Na-
tional Research Council Committee on Toxicol-

ogy recommended that HCI concentrations

averaged over a l-hour period should not exceed

1.5 mg/m3. The Mississippi Bureau of Pollution

Control further limits HCf daily exposure to a 24-

hour average of 0.07 mg/m s to protect the public.

The predicted 1-hour and 24-hour HC1 air concen-

trations at 42 miles from the test stand are

approximately 10 times lower than either of these

guidelines and, therefore, are not considered a

health risk to off-site populations. The maximum

average 1-hour and 24-hour concentrations

predicted at locations from 0.6 to 42 miles from

the test stand are lower than the predicted con-

centration at 42 miles. Therefore, no adverse

health effects to SSC workers from HC! emissions

are expected. No long-term effects from HC1

emissions for a single event or over the 30-year

llfe of the program are expected because HC1

does not accumulate in the body, is controlled by

normal body metabolism, and is readily elimi-

nated from the body.

The potential relationship between environmental

exposure to aluminum and Alzheimer's disease

was addressed through (1) a comprehensive

literature search on aluminum and Alzheimer's

disease, and (2) a consultant review by recog-

nized medical experts. Samples taken from actual

Space Shuttle emissions, and modeling conducted

with specific reference to ASRM indicate that

aluminum emissions are comprised almost solely

of nonfibrous aluminum oxide. The EPA has

determined that nonfibrous aluminum oxide is

nontoxic. Additionally, in a recent review of

aluminum toxicity, EPA found no evidence that

supports the theories that aluminum (including

aluminum oxide) plays a pathological role (causes

disease) in Alzheimer's disease. The contribution
of ASRM emissions to any overall human alumi-

num intake is limited by two factors: (1) the

predicted concentrations of aluminum oxide from

ASRM testing are quite low, and (2) aluminum

oxide is not readily absorbed into the body. The

average daily intake in food and water of all

species of aluminum (aluminum oxide, aluminum

hydroxide, aluminum chloride, etc.) by persons

not exposed to ASRM testing varies between 5

and 50 rag. The predicted 24-hour average

concentration of aluminum oxide in the air at 4.2

miles from the ASRM test site equates to a

projected maximum total aluminum exposure of

0.002 to 0.008 rag. From all of the modeling and

sample monitoring data on the composition of the

emissions and the minute quantities projected,

along with the information on intake of aluminum

oxide, it is concluded that ASRM testing would

not cause or increase the risk of Alzheimer's

disease or other neurological disorders.

In addition to HCI and aluminum oxide, the

SFEIS addresses the poss_le health effects of

other ASRM exhaust products such as aluminum

chloride, and the poss_le production of acid

aerosols and acid-coated particles. The formation

of aluminum chlorides in the atmosphere after

the plume has been emitted from the motor

depends upon chemical reactions between the

HC1 gas, water vapor, and aluminum oxide par-

ticles. It is shown that approximately 0.02 percent

of the emitted aluminum oxide will be trans-

formed to aluminum chloride when water and

HCI are present when the plume is still near the

ground. This reaction becomes less likely as the
plume rises and the air pressure andtemperature
drop. Only small amounts of aluminum chloride

are expected to be produced as a product of

combustion. The amounts emitted represent only

about 0.03 percent of all aluminum compounds in

the exhaust plume. Because no health risk

standard exists for aluminum chlorides, the

concentration expected for aluminum chlorides

was compared to another compound, HCf, since

their irritant toxic properties are similar. Concen-
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trations of alumimun chloride were found to be

far below the HC1 standards set to protect human
health.

Little information is available to precisely quantify
the amount of HC! aerosol formation from ASRM
testing. Therefore, conclusions were drawn

regarding the human health impact of HCI-
formed acid aerosols by conservatively assuming
that all of the HCI gas from ASRM testing forms
acid aerosols and that the aerosol level is equal to
the point of maximum HCI concentration in air
(024 rag/m3). This level of HCf-aerosol was then

compared to sulfuric acid aerosol which may have
simnar potential human health effects and on
which more information is available. Based on

this comprehensive review and assessment, it is

concluded that HCI aerosols from ASRM testing
should not cause any adverse health effects.

Information on the human health effects of acid-

coated aluminum oxide particles, which are found

in small amounts in Space Shuttle emissions, is

sparse. However, such particles are not pro-
jectecl to form to any great extent and should not
result in short- or long-term health effects.

NASA ENVIRONMENTAL ASSURANCE
PROGRAM

Underlying the discussion in this SFEIS of poten-
tial effects of ASRM testing on human health and
the native ecosystem is NASA's commitment to a

comprehensive environmental assurance pro-
gram. This program is designed to ensure that
the ASRM static test program at SSC is conducted
safely and without damage to human health and
the environment. The program will check the
assumptions that have been made and the predic-
tions that ASRM will not result in negative im-
pacts. NASA has built in extra measures of safety
and protection against uncertainties or
unpredicted conditions. An Environmental

Assurance Program has been established. Its
purpose is to prevent adverse effects to human
health and the environment so that damage will

not occur that requires later correction. The

program consists of:

Weather forecasl_g and monitoring to

obtain site-specific atmospheric profiles for
predicting plume behavior and dispersion;

Comprehensive field monitoring of noise
levels and ground-level air concentrations of
exhaust products during each ASRM test;

Continuing the verification of air quality
predictions by evaluating the realtime data
from testing the Space Shuttle Solid Rocket
Motors at the Thiokol facility in northern
Utah; and

Establishing a sampling program and re-
gional data base for vegetation, air, soil,
rainwater, surface water, and groundwater.

The single most important environmental crite-

rion for testing will be weather conditions. The
extensive modeling done for a variety of test
conditions shows that it is poss_le to substan-
tially avoid adverse environmental effects by
performing the ASRM tests under certain meteo-
rological conditions. The conditions include
minimum wind speeds, conditions that wftl affect

the height to which the plume rises, and condi-
tions that wRl indicate whether rain is expected
within a few hours. The precise meteorological

conditions under which testing will take place will
be set by the Mississippi Bureau of Pollution
Control. Testing only under the prescribed
conditions will limit the concentrations of exhaust

products in ground-level air concentrations,
reduce the deposition of aluminum oxide and
aluminum chlorides on the ground, and prevent

an increase in the acidity of rainfalL

NASA will establish an on-site weather station and

use up-to-the-minute weather information before,
during, and after each test to ensure that proper
atmospheric conditions are present. Both off-site
and on-site weather information will be used.



Testingwill notoccurif rain ispredicted within a
minimum of two to four hours ofthe test, depend-
ing on wind speed. NASAwfll verify the accuracy
of this weather forecasting system prior to actual

testing by conducting extensive "practice" fore-
casting. There is sufficient time to do this to
assure that the weather conditions for a test can

accurately be predicted.

During operation of the project at SSC, compre-
hensive field monitoring wK1be undertaken. The
amount and chemical characteristics of exhaust

products in the air (at ground leveD and on the

ground win be measured, and noise levels w_ be

determined. This type of information w_ be the

check that everything is consistent with that
projected. Monitoring what happens during and
after tests is not enough unless current conditions
are understood. For this reason, NASA is devel-
oping a regional environmental data base for air,
son, groundwater, surface water, rainwater, and

vegetation. All of this information will be used to
monitor the quality of the environment and

ensure that ASRM testing does not cause any
harmful effects.

In the unh'kely event that this assurance program
identifies conditions outside acceptable limits
attn"outable to ASRM testing activities, NASA is
committed to suspend testing until the problem is
evaluated and corrective measures are developed
and approved by appropriate regulatory agencies.

SUMMARY OF ENVIRONMENTAL ASRM
EFFECTS

The final ASRM test site selected reflects the

minimum poss_le impact to the wetlands at SSC.
Where impacts to wetlands cannot be avoided,
mitigation must be provided to the extent pos-

s_le. Wetlands temporarily affected by construc-
tion will be allowed to return to their natural state.
The determination of loss for wetlands perma-

nently affected wm be based on the functions they
serve, such as fish and wildlife habitat and flood
control. The functional values of such wetlands

wRl be replaced. The improved predictions
supported by field observations of the exhaust
plume dispersion indicated the ultimate concen-
tration of the products of concern CrICLand
aluminum oxide) would be less than originally

predicted in the FEIS. This assessment shows
that potential exposure to these exhaust products
should not cause any adverse effects on humans.
The analysis provided in this SFEIS also sup-
ported the findings in the FEIS that, given the
naturally occurring conditions of the environment
in the area of SSC, no harm to aquatic species,
w:ddlife, plants, soRs, groundwater, or surface
water as a result of ASRM testing is expected.
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GLOSSARY OF ABBREVIATIONS

AND STANDARD CONVERSIONS

ACGm

ACOE

Al

AlCl3

Al(H20)S(OH)S

Al2os

ASRM

BACT

calories

CEQ

CFR

C1

EIS

EPA

FEIS

H20

HCf

INPUFF

kln

km2

KSC

Ibs

Ib/acre

m

m/s

American Confmence of Governmental Industrial Hygienist

U_. ArmyCorps of Engineers

Aluminum

Aluminum Chloride

Aluminum Hydroxide

Aluminum Oxide

Advanced Solid Rocket Motor

Best Available Control Technology

Energy required to raise I gram mass of water 1°C

Council on Environment Quality

Code of Federal Register

Chlorine

Environmental Impact Statement

Env/ronmental Protection Agency

F'malEnvironments] Impact Statement

Water

Hydrogen chloride

Puff dispersion model

Kilometer

Square kilometer

Kennedy Space Center

Pounds

Pound per acre

Meter

Meter per second

XX



max.

MBPC

meq/100g

mg/L

mg/m s

mg/m 2

mi

min.

mole

MS

_g/L

_/m s

tun

NAAQS

NASA

NRC

NSTL

OSHA

PCAD

pH

ppm

PSD

SARA

sec

SFEIS

S02

sq. mi.

SRM

Maximum

Mississippi Bureau of Pollution Control

Milliequivalents per 100 grams

Milligram per litre

Milligram per cubic meter

Milligram per square meter

Mile

Minimum

Mass numerically equal to molecular weight

Mississippi

Micrograms per litre

Microgram per cubic meter

Micrometer or micron (one millionth of a meter;, see scale below)

National Ambient Air Quality Standard

National Aeronautics and Space Administration

National Research Council

National Space Technology Laboratories (see SSC)

Occupational Safety and Health Administration

Products of Combustion/Atmospheric Dispersion

Measurement of the acidity or alkalinity of an aqueous solution

Parts per million

Prevention of Significant Deterioration

Superfund Amendments and Reauthorization Act

Second

Supplemental Final Environmental Impact Statement

Sulfur dioxide

Square mile

Solid Rocket Motor
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SSC

USFWS

USGS

Stennis Space Center

U_. Fish and W'ddli_ Service

U.S. Geological Survey

mito km

mg to kg

mg to gg

Rtom

STANDARD CONVERSIONS

Multiply by 1.609344

Multiply by 1,000,000 (10s)

Multiplyby 1000

Multiply by 0.3048

RELATIVE PARTICLE SIZES

Average Aluminum Oxide Particle

I

/

Tobacco Smoke

Mean Add Aeroso_Diameter

Flour Dust

I
Typical Cloud Drop_

I
Talc Powder

Pollens

Typical Rain Drop

(Diameter in Meters)

xxii



1.0 INTRODUCTION

In March 1989, NASA issued the Final Environmental Impact Statement (FEIS) for the
Advanced Solid Rocket Motor (ASRND Program. The FEIS evaluated ASRM static testing

locations at the Kennedy Space Center (KSC) in Florida and at the Stennis Space Center
(SSC) in Mississippi. The FEIS indicated NASA's preference to test the ASRM at SSC.

Following publication of the FEIS, NASA began additional work needed so that

environmental permits required by state and federal laws could be applied for and received.
Specific permit actions undertaken at this time include the following:. 1) an application for
a Prevention of Significant Deterioration (PSD) permit was submitted to the Mississippi
Bureau of Pollution Control in August 1989; 2) an application for a wetlands permit under
Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act was

submitted to the U.S. Army Corps of Engineers (ACOE) in May 1990; 3) the Section 404
permit application submitted to the ACOE wiU be used by the state of Mississippi to make a

water quality determination under Section 401 of the Clean Water Act; and 4) an
application to modify SSC's existing National Pollutant Discharge Elimination System
(NPDES) wastewater permit was submitted to the Mississippi Bureau of Pollution Control
in June 1990.

Subsequent to submittal of the PSD permit application, public concerns were voiced
concerning ASRM testing at SSC. These concerns have been noted in local newspapers, at
public meetings, and in correspondence. In order to present additional information

pertaining to the Section 404 and Section 401 permitting actions, and to address public
concerns, NASA is providing this Supplemental Final Environmental Impact Statement
(SFEIS). The SFEIS supports the goals of the National Environmental Policy Act (NEPA)
and was developed after consultation with the ACOE and the Council on Environmental
Quality (CEQ). The CEQ is the executive office which establishes uniform procedures for
implementing NEPA and preparing environmental impact statements.

The CEQ guidelines direct federal agencies (such as NASA) to prepare supplements to final
environmental impact statements if 1) there are substantial changes in the project that are
relevant to environmental concerns; 2) there is significant new information relevant to

environmental concerns; or 3) the agency determines that the purposes of NEPA will be
furthered by doing so (40 CFR 1502.9). This SFEIS provides site-specific information
addressing a revised facility layout, affected wetlands at SSC, mitigative plans for those

affected wetlands, and potential environmental and human health effects from rocket
exhaust emissions.

1.1 ASRM PROJECT DESCRIPTION AT SSC

Stennis Space Center and its surrounding acoustical buffer zone are located predominantly
in Hancock County, Mississippi (F'tgure 1-1). The Space Center, located within 12 miles of
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the Gulf Coast, includes a NASA fee ownership area and an acoustical buffer zone. The fee

area, where all NASA-approved institutional and industrial development takes place,
occupies approximately 22 square miles. The acoustical buffer zone consists of about 200
square miles extending outward five miles from the fee area perimeter.

The ASRM project fac_ties will be located in the eastern portion of the fee area at SSC
(F'_,ure 1-2). New facilities to be constructed include: 1) a lateral access road, 2) a
construction access road, 3) an engineering operations building, 4) a test control center, 5) an

equipment storage facility, 6) a barge/dock facility on the existing SSC access canal, 7) a test
stand, 8) a heavy duty transporter road to move the ASRM from the barge dock to the test
stand, 9) a deflection ramp, and 10) a catchbasin to collect stormwater runof£ A fire safety
zone will be cleared around the test stand. Project operation may include testing up to four
motors per year. Construction is scheduled to begin in late 1990, with initial testing

scheduled in mid-1993. The test stand location is approximately 6.5 miles from the nearest
community outside SSC, and approximately 2 miles from most of the workforce at SSC.

Each test will last about two minutes and will emit combustion products that include

aluminum oxide, hydrogen chloride gas, water vapor, carbon dioxide, aluminum chloride,
and other constituents. Hot rocket exhaust will extend out horizontally from the test stand

before the exhaust loses energy and begins to rise to an altitude of more than 10,000 feet at
the plume's centerline. A fire safety zone extending approximately 4,000 feet out from the

rocket nozzle and approximately 1,000 feet wide will be cleared of standing vegetation,
primarily plantation pine trees. A deflection pad and ramp system will be built on a
portion of this cleared safety zone to limit environmental impacts to insignificant levels
by deflecting heat, preventing soil and rocks from being caught up in the exhaust plume,
and assisting in dispersion of the exhaust plume.

1.2 ENVIRONMENTAL ASSURANCE PROGRAM

In order to safely conduct the ASRM static test program at SSC, NASA is committed to

establishing a comprehensive environmental assurance program focused first on
prevention of significant environmental impacts, and second, on a monitoring program

designed to detect any deviation from predicted conditions. The environmental quality
assurance program at SSC will include:

• Meteorological (weather) forecasting and monitoring

• Acoustical (noise) prediction and monitoring

• Air quality prediction and monitoring

• Environmental baseline determination of vegetation, air, soil, rainwater, surface

water, and groundwater

To continue validation of models that predict exhaust product concentrations in the air and

deposition on the ground, NASA will continue to acquire realtime data from ongoing
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static tests of Space Shuttle solid rocket motors at the Thiokol facility in northern Utah.
Predicted plume behavior as a function of meteorological conditions will be evaluated and
compared to actual results following each test. Updates on information from these efforts
will be provided to regulatory authorities and will be available to the public.

NASA w_l establish a meteorological support group at SSC with state-of-the-art equipment
to obtain site-specific atmospheric profiles for predicting plume behavior and dispersion.
Forecasting of precipitation will be performed by certified, experienced meteorologists with
access to data from the National Weather Service long-range radar system and a high

resolution, realtime weather radar system to be installed at SSC.

To verify the accuracy of the weather forecasting system prior to actual testing, NASA will _

begin extensive "practice" forecasting in 1991. For each practice or simulation, the weather
forecasting system _ be used to predict meteorological conditions such as cloud coverage,
windspeeds, wind direction on the ground and aloft, and probability of rain on the ground
and aloft. The forecast will be compared to a set of meteorological criteria that will be

established by the Mississippi Bureau of Pollution Control during the PSD permitting
process. If the forecast conditions are outside the prescribed limits, a "NO GO" decision will
be made, and the practice run will end. If the forecast conditions are within the prescn_oed
criteria, a "GO" decision will be made. A "GO" decision will be followed by a realtime

tracking of meteorological conditions in the direction of simulated plume travel to evaluate
the accuracy of precipitation forecasting and downwind changes. Results of these

simulations will be individually and collectively studied to ensure that all elements
necessary for decision-making are fully functional, and personnel are adequately trained
and familiar with the equipment to minimize the potential for error and to meet the

requirements of the program.

NASA is finalizing plans and beginning baseline data acquisition on the SSC fee area and

region surrounding the facility. Aircraft and satellite photography methods, also referred
to as remote sensing, w_l be used to create vegetation maps. Tests wfll be made to
determine the presence and health of fish and other aquatic organisms in local surface
waters. Soils and water will be monitored for such parameters as aluminum (total and

bioavailable), pH, and buffering capacity. Rainwater will be monitored for pH and acidic
compounds. Air will be monitored to measure the presence of particulates. All data will be

input into a computerized geographical information system to assimilate this massive data
base and retrieve and analyze data.

When the project becomes operational at SSC, comprehensive field monitoring of acoustical
(noise) levels and exhaust product characterization, air concentrations and deposition

patterns will be undertaken. All data will be included in the computerized geographical
information system for an environmental baseline record.
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1.3 SCOPE OF THE SFEIS

The topics covered by this SFEIS are: 1) a description of the Section 404 wetlands and

Section 401 water quality perrnitti_ processes this document is designed to support;

2) impacts to wetlands from conslruction of the ASRM test facilities at SSC; 3) additional

air quality modeling results that provide air concentration and ground deposition rates of

HCf, aluminum oxide, and aluminum chloride from ASRM test emissions; 4) the potential

for these exhaust products to adversely affect surface and groundwater, plants, soils,

wildlife, and aquatic life; and 5) the potential for these exhaust products to adversely affect

the health of the general public and persons working at SSC. Particular attention is paid to

short-term (acute) e_cts of breathing hydrogen chloride gas, acid aerosols, and aluminum

oxide; and long-term (chronic) effects.
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2.0 THE WETLANDS AND WATER QUALITY
PERMIT PROCESSES

2.1 INTRODUCTION

Additional information relevant to ASRM program impacts on wetlands has been
produced since publication of the FEIS. This information includes: 1) publication in 1989
of the Federal Wetland Delineation Manual (FIC 1989); 2) an April 1989 EPA delineation of
wetlands on the proposed ASRM test site; 3) refinement of the site facility layout, road
alignments, and test stand and deflection ramp preliminary layouts; and 4) additional air
quality modeling that predicts both the concentration in the air and deposition on the

ground of emissions resulting from ASRM testing. The information presented in this
SFEIS is particularly relevant to two of the environmental permits for which NASA has
applied: the Section 404 wetlands permit and the Section 401 water quality certification.
The 404 wetlands permit derives its name from Section 404 of the Clean Water Act (33 USC
1344) which proh_its the discharge of dredged or fill material into waters of the United
States without a permit from the ACOE. Similarly, the 401 water quality certification

derives its name from Section 401 of the Clean Water Act (33 US(; 1341) which requires
each state to adopt and administer water quality standards through the certification
process. This section describes the process and requirements of these permitting actions, and

provides the background on how and why additional wetlands information was
developed.

2.2 THE 404 AND 401 PERMIT PROCESSES

Beginning in July 1977, the ACOE assumed regulatory respons_ility for all isolated
wetlands (wetlands not directly associated with navigable waters) in the United States.
This jurisdiction extends to the regulation of all proposed activities involving deposition of
dredged or fill material into waters of the United States. All such activities must receive

prior approval through the Section 404 permit process.

In responding to President Bush's national goal of "no overall net loss" of wetland
functions, the ACOE and EPA reached a formal agreement (referred to as a Memorandum
of Agreement or MOA) on how mitigative requirements would be determined for
individual 404 permits (ACOE 1989). This agreement prescribes a mitigative process
beginning with avoiding impacts, then minimizing impacts, and finally compensatory
mitigation. An exception to this sequential process involves areas with a high proportion
of wetland. In these cases, it is stated that completely avoiding impacts may not be
poss_le; the goal may be to minimize impacts and/or compensate for wetland loss. In

keeping with the tenor of the agreement, NASA has attempted to avoid or minimize

impacts to the extent poss_le and intends to compensate for any unavoidable loss of
wetland functions (see Section 3.3).

In addition to the ACOE permitting requirements, a water quality certification is required

from the state of Mississippi for all wetland-fill projects. This certification, a Section 401
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permit,addressesimpactsof proposedfill activities on water quality. The Federal Water
Pollution Control Act, as amended by the Clean Water Act of 1977 and reauthorized in

1987, requires each state to adopt water quality standards which are administered through
the Section 401 certification. State compliance with the Clean Water Act has been delegated
to the Mississippi Department of Environmental Quality, Bureau of Pollution Control
(MBPC) by the EPA.

All projects requiring 404 permits also require 401 certifications. If the 401 certification is

denied by the Mississippi Bureau of Pollution Control, the 404 permit is automatically
denied. However, approval of a 401 certification for a project does not guarantee approval of
the 404 permit. Both permit processes involve a public comment period. For the ASRM
project, in addition to the public comment period (30 days for the 404 permit), a single
public hearing will be held for the 401 certification process. This hearing will provide
additional public input for the Mississippi Bureau of Pollution Control

For the 404 permit application, the ACOE requires a detailed description and explanation of
the purpose of the project; the locations, affected areas, and types of wetlands that w_l be
filled, including results of wetland delineations; the wetland functional values that will be

affected; and a detailed description of the amount and type of fill material required. A
specific project mitigative plan will be developed as part of the 404 permitting process, and
NASA will be responsible for the plan's implementation.

The 401 certification does not require a separate application. The State of Mississippi w_l
make its 401 determination based on its review of NASA's 404 permit application and
supporting documents such as this SFEIS.

2.3 ADDITIONAL INFORMATION

In January 1989, a cooperative effort between four federal agencies respons_le for
conserving the nation's wetland resources resulted in an agreement on a technical basis for

identifying and delineating wetlands. A Memorandum of Agreement between the ACOE
and EPA, concerning the agencies' agreement to use the new manual when conducting a
determination of wetlands, became official in March 1989. The Federal Manual for

Identifying and Delineating Jurisdictional Wetlands (FIC 1989) includes specific
instructions for delineating wetlands based on the presence of adequate hydrology,
wetland vegetation, and wetland soils. Typically, all three criteria must be satisfied for a
site to be classified as wetland under this method. Prior to the introduction of this

methodology, confusion frequently arose over what constitutes a wetland because of the

different types of wetlands and the agencies' differing methodologies for wetland
identification and delineation.

Under the new guidelines, the hydrology requirement is assumed to be satisfied if an area
has typical wetland vegetation growing on wetland soil with no evidence of man-made
drainage facilities (such as ditches). The practical aspect of this new approach is a change in
the way that seasonal wetlands (e.g., bottomland hardwood forests) are identified for
regulatory purposes. Even though such areas do not always contain water throughout the
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year, seasonal wetlands are especially important for maintaining wildlife, including

many threatened and endangered species. The relevance of these guidelines to the ASRM

project is that many areas in the Gulf Coastal Plain of Mississippi that may not be

classified as wetlands under previous delineation methods are classified as wetlands under

this new method.

The proposed ASRM test site is underlain primarily by hydric (wetland) soils. Despite the

extensive ditch systems existing throughout the proposed ASRM test site, soils are

saturated for much of the year. Also, despite many decades of vegetation conversion to

pine plantation as a result of silvicultural (timber growing) practices, wetland vegetation

(bottomland hardwood species) is still an abundant element in pine forest understories and

in forest openings (pitcher plant bogs). In light of these facts and under the new federal

guidelines, much of the proposed test site is classified as wetland.

In February 1989, NASA requested that the Vicksburg District ACOE determine the

presence of wetlands on the proposed test site OdcCaleb 1989). In March 1989 (in

compliance with the two agencies' coordination agreemen0, the ACOE requested that the

EPA conduct an investigation of the proposed ASRM test site to determine the size and

extent of existing wetlands using the new federal wetland delineation method (McGregor

1989a). EPA made an April site visit with the ACOE and field-checked the presence of

hydric and upland soils as indicated by the soil survey for Hancock County (USDA 1981).

EPA also made visual inspections of the area to check on the presence of wetland vegetation

and hydrology. On the basis of these activities, EPA determined that wetlands exist on the

site, and that the soil survey for the county was a good approximate indicator of the

locations of uplands and wetlands at this site. EPA's report to the ACOE indicated that all

hydric soils shown on the soil survey supported wetlands, and that all nonhydric so_s

did not support wetlands. As a result, the majority of the proposed test site was delineated

as wetland. The ACOE subsequently informed NASA that a 404 permit would be required

for all wetland-filling activities associated with the ASRM project (McGregor 1989b).

Between January and May of 1990, NASA and its contractor refined the site facility

layout, test stand and deflection ramp preliminary designs, and road alignments. These

refinements helped in determining construction impacts to wetlands, and provided the

basis for developing a general wetland mitigative plan. The results of this process are

presented in Section 3.0, Primary Impacts to Wetlands From ASRM Facility Construction.

In July 1990, final deflection ramp configuration and dimensions were established.

Other information relevant to ASRM program impacts on wetlands includes air quality

modeling of ASRM test emissions and impact evaluations based on the additional

modeling done for the PSD air emissions permit application submitted to the Mississippi

Bureau of Pollution Control in August 1989 and this SFEIS in conjunction with the FEIS

modeling. Results of these analyses are presented in Section 4.0, Secondary Impacts to

Wetlands from ASRM Test Emissions.
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3.0 PRIMARY IMPACTS TO WETLANDS FROM
ASRM FACILITY CONSTRUCTION

3.1 INTRODUCTION

As noted in Section 2.0, the ACOE and EPA have adopted a rm'tigative process that stresses
avoiding impacts, minimizing impacts, and compensating for unavoidable impacts.
NASA has followed this procedure, using an iterative process that is still underway.
NASA identified a general site location, selected highly functional wetland areas (such as

Lion Branch) to be avoided, and considered facility layouts that met these criteria. Then
more detailed wetland evaluations were undertaken and the facility layout was
simultaneously refined, so that NASA could be certain that construction would avoid
wetland areas such as Lion Branch and minimize wetland impacts overall. Because

wetlands are so abundant on the site, no practicable alternative to construction within
wetlands could be identified. The final site layout reflects the minimum poss_le physical

and functional impact to wetlands at SSC (NASA 1990d).

3.2 WETLAND IMPACT EVALUATION

3.2.1 Wetland Delineation

As noted in Section 2.3, the EPA wetland report to the ACOE stated that all hydric soils
shown on the county soil survey indicate wetlands at the proposed ASRM site, and that
all nonhydric soils indicate nonwetlands (uplands). Figure 3-1 illustrates the approximate
location and extent of uplands and surrounding wetlands on the proposed test site and the
proposed location of project facilities. Because of the large amount of proposed wetlands in

the project vicinity, uplands rather than wetlands are locally scarce.

3.2.2 Affected Wetland Types

Four major plant community types have been identified on the proposed ASRM site:
1) pine forest; 2) bottomland hardwood forest; 3) pitcher plant begs; and 4) grasslands
(Esher and Bradshaw 1988). Vegetation in the buffer zone is primarily pine forest and
bottomland hardwood forest. Pitcher plant bogs, bottomland hardwood forests, and much

of the pine forests can be classified as wetland. Wetland types that will be affected by
construction of ASRM facilities include pine forest (Plates 3-1 and 3-2) and bottomland
hardwood forests (PLate 3-3). Major concentrations of pitcher plants (Plate 34) will be

identified and avoided during construction. The unique status of pitcher plant bogs and

their diminishing numbers in the Mississippi Coastal PLain is largely a restdt of
commercial pine plantation forestry, and NASA is committed to preserving pitcher plant
bog communities. Not all pitcher plants can be avoided, however, because individual

plants are scattered throughout the proposed ASRM test site.
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Plates 3-1 and 3-2. Typical pine forest at the SSC ASRM site.
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Plate 3-3. Typical bottomland hardwood forest type.

Plate 3-4. Pitcher plant bog community (not affected by ASRM
facilities).
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The proposed test site also contains areas that are now considered wetlands that have

formed on 1960s-era dredge spon deposits. These areas will be identified, delineated, and

avoided as sites for debris and soil dumping during construction of the ASRM facility. All

spon or excavated materials, approximately 60,000 cubic yards, will be placed in approved

uplands disposal areas (see Figure 3-1). Adequate uplands area exist within these spoil

deposits to accept additional quantifies of fill without affecting these wetlands (Clarke

1990).

3.2.3 Affected Wetland Functional Values

Wetlands can perform important hydrological, biological, economic and social functions.

The Mississippi Bureau of Pollution Control specifically recognizes six hydrological

functions (MBPC 1990b), including:

• groundwater recharge and discharge

• floodflow alteration

• sediment stabilization

• sediment and toxicant retention

• nutrient removal/transformation

• production export

Additionally, wetlands can provide fish and wildlife habitat, education, recreation, and

open space.

The quality of a wetland can be evaluated in terms of the quality and importance of its

functions but may not be related to its size. As a result, mitigation required for wetland

loss is based on functional loss rather than area loss.

Preliminary functional value analysis of both pine forest and bottomland hardwood

wetland types has been completed as part of a wetland mitigation report for the ASRM

project at SSC (NASA 1990d). The wetland mitigation report was submitted to the ACOE

as part of NASA's Section 404 application, and extensive excerpts are included in Appendix

A of this SFEIS. The wetland mitigation report concluded that the principal values of the

wetlands affected (filled) by ASRM fac_ities are biotic and hydrologic in character. The

primary biological function of the pine forest is as wildlife habitat. However, forest

management has converted what appears to have been a hardwood or hardwood-pine

habitat into a commercial pine plantation forest. An additional habitat function found in

the pine flatwood forest is the support of pitcher plant bogs. These bogs are unique habitats

that have also been adversely affected by forest management (ditching and planting of

pine). Similarly, the planting of pine in swales has degraded the bottomland hardwood

habitat. Pine plantation management has impaired the wildlife function by reducing

hardwood (or mixed hardwood-pine) forests.
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The principalhydrologicfunctionalvaluesof wetlands affected(filled)atthe proposed

ASRM testsiteare floodstorage and desynchronizationof rainfallrunoff.These values,

too,have been reduced by the extensivedrainageditchsystems inthe testarea.

The Waterways Experiment Station (WES) in Vicksburg, Mississippi, will conduct

additional analyses of the specific wetlands functions (known specifically as the

Bottomland Hardwood Wetland Evaluation Technique, or BLH-WET) at the proposed

ASRM test site (McGregor 1990). This technique is a more detmled approach for assessing

wetland function and provides an estimate of the value of the wetland. The results of the

WES analysis will be used by the ACOE to assist in determining mitigative needs for the

ASRM project.

3.2.4 Extent of Affected Wetlands

NASA plans to keep the proposed test area free of trees. The intent is to maintain vegetation

in the test area and safety zone in a nonforested state in order to prevent forest fires and

control thrown debris (Clarke 1990). In preparation for construction of the ASRM test

facility, NASA has begun to remove marketable timber from the building pads, test area,

safety zone, and road alignments within the project area. This timber (primarily pine) is

approximately 30-40 years old and covers approximately 312 acres (Table 3-1). Some topsoil

high in organic matter will also be stripped away (pending approval of the 404 permit),

because these soils may ignite during test firings. Grass and shrub vegetation in the project

test area will be maintained by periodic controlled burning.

Of the 312 acres to be cleared for construction of the ASRM test facility, a maximum of 69

wetland acres will require clearing and filling (NASA 1990d). Table 3-1 lists the total

acreage of wetlands to be cleared and filled for each of the new buildings and new or rebuilt

roads and other facilities as submitted in the 404 application to the ACOE in May 1990.

Specific acres of each wetland type to be filled have not been calculated, but they will be

identified prior to construction and prior to development of the wetland mitigative plan.

The preliminary design of the deflection ramp, for example, indicated that 24 acres of

wetlands will be filled. However, it is anticipated that final ramp design will require

filling less than 2 acres. Approximately 90 percent of the affected wetland area is pine with

some grassland, also referred to as pine-savannah. The remainder of affected wetland is

primarily bottomland hardwood forest.

3.2.5 Cumulative Impacts to Wetlands

Various regulations under which the wetlands 404 permit is administered also explicitly

require consideration of cumulative environmental impacts. Bottomland hardwood forest

ecosystems of the southeastern United States have been rapidly transformed or modified

over the last 40 years through conversion to agricultural crops and timberland, ditching

and road building, and flood control construction (Gosselink and Lee 1989). These

transformations in bottomland hardwood forest ecosystems have adversely affected
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Table 3-1. Approximate wetland acreage to be cleared and filled during

construction of ASRM Test Facility.

Facility

Total

Wetland Acres
Cleared

Approximate Number
of Wetland

Acres Filled

Engineering Operations Building

Test Control Center

Equipment Storage Building and
Test Stand Area

Deflection Ramp

Test Range

Dock Area

Roads

Mainline Road

Lateral Access Road

Transporter Road

Power Line Right-of-Way

TOTAL

5

4

25

38

145

6

35

34
16

4

312

2

2

13

24

0

4

8

10

6

0

69 acres

Source: NASA 1990d, as revised in June 1990.
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pitcher plant bogs (Folkerts 1982). Because much of the original bottomland hardwood

forest on the ASRM test site was previously converted to pine forest, this wetland type has

already been lost in a regional context. A small area of this pine forest will be dealed and

filled for construction of the heavy-duty transporter road. The remaining wetlands to be

disturbed include only pine plantation, which have existing modified hydrology and low

wildlife habitat values (NASA 1990d). The majority of the wetlands to be filled or cleared

are of lower functional value than the wetlands that will be protected.

In summary, a small area of bottomland hardwood forest will be filled for construction of

the heavy-duty transporter road. The wetland functional values affected will be

determined when the ACOE completes its BLH-WET analysis. No significant cumulative

impacts are anticipated for pitcher plant bog communities, although individual pitcher

plants scattered throughout the site cannot be avoided. The ASRM project has the potential

to increase the quality of existing bottomland hardwood forest and the total area extent and

health of pitcher plant bogs at SSC through programs involving: 1) mitigation for wetland

loss; and 2) management of vegetation after removal of the current standing crop of

marketable pine in areas affected by construction activities.

3.3 MITIGATION OF WETLAND IMPACTS

Federal Executive Orders on wetland protection (E.O. 11990) and floodplain management

(E.O. 11988) and regulations pursuant to those orders require that no federal project be

located in a wetland/floodplain if practical alternatives exist that avoid the

wetland/floodplain. The Executive Orders further require that any project to be located in

such areas must include all practicable measures to minimize harm to the

wetland/floodplain. As noted earlier, NASA used an iterative process to reach the point

where just 312 wetland acres would be affected, and most of those acres would be pine

forest with relatively low functional value. Specific steps undertaken by NASA to comply

with these Executive Orders included: 1) an alternatives analysis in siting the project;

2) interagency coordination; and 3) implementation of standard construction practices. For

those impacts that are not avoidable, NASA continues to work with the appropriate

agencies to develop an acceptable mitigative plan.

3.3.1 Alternatives Analysis for Site Selection

Since the selection of SSC as NASA's preferred ASRM test location, the ASRM facility

plans have gone through three successive site layouts to avoid and minimize impacts to

wetlands. Numerous meetings with the ACOE and other agencies governing wetlands

permitting, wildlife, and air/water quality provided additional information in choosing
the final site.

The selected site meets the following criteria: minimizes the impact to the highly

functional Lion Branch area; avoids pitcher plant bogs; does not impact any existing or

known future NASA program plans; minimizes the length of the heavy-duty transporter

road and its effect on wetlands, especially bottomland hardwoods; and allows for the
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maximum use of existing utility corridors and road beds. Because wetlands are so

abundant on the site, no practicable alternative to construction within wetlands could be

identified. The final site layout reflects the minimum poss_le physical and functional

impact to wetlands at SSC (NASA 1990d).

3.3.2 Interagency Coordination

Because this project requires the filling of wetlands, an activity regulated by the ACOE
under Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act, the

ACOE, Vicksburg District, has been providing information and assistance in the

development of the project. Numerous meetings, correspondence, and phone conversations

have occurred to ensure that documentation prepared by NASA and its consultants

adequately addresses regulatory concerns of the ACOE. A formal application for a Section

404 permit was submitted to ACOE in May 1990. Construction of the project facilities,

except for timber harvest activities excluded by law from Section 404 review, will not

begin until a Section 404 permit has been issued by the Vicksburg District, ACOE. Prior to

construction, NASA's wetlands mitigative plan must be reviewed and approved by the

ACOE and other interested agencies.

3.3.3 Standard Construction Practices

Clearing within wetlands will be limited to the minimum necessary to complete the

project. Areas to be preserved (such as pitcher plant bogs) within construction limits will

be clearly marked to avoid accidental disturbance by equipment operators. Erosion and

sedimentation will be controlled through use of temporary and permanent erosion control

techniques. This includes, but is not limited to, temporary and permanent sediment basins

and detention ponds, temporary and permanent seeding, check dams, diversion ditches,

and erosion-control matting. All fill material will be clean and not contain any hazardous

materials that might be harmful to the environment. A detailed, site-specific erosion

control plan will be developed for the entire project prior to construction. Specific erosion-

control measures will be identified at specific locations when final grading plans with

cross sections and drainage details are complete.

3.3.4 Mitigation for Unavoidable Impacts to Wetlands

All areas (wetland and upland) temporarily affected by construction of the proposed ASRM

test facility will be regraded and revegetated with appropriate species. However, some

wetlands--excluding pitcher plant bogs-will be permanently affected. Mitigation will be

based on loss of wetland function, not on area loss, and wnl (in part) be based on

evaluations of functional value to be performed by the Waterways Experiment Station

using the BLH-WET.

Mitigation for permanent loss of wetlands in the proposed ASRM test site will involve:

1) restoration of hydrologic functions by filling drainage ditches in the pine flatwoods

elsewhere at SSC and by building low berms across selected drainage swales, with the
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intent that these areas will be left to revegetate to a natural condition; 2) restoration of

bottomland hardwood forest cover for wildlife by discontinuing pine plantation

management, with the intent that these areas w_l be left to revegetate to a natural

condition; and/or 3) enhancement of existing unique wetlands (pitcher plant bogs) by

controlled burning in selected areas (NASA 1990d). The amount of area required for

mitigation will be determined in consultation with state and federal resource management

agencies (ACOE, EPA, and USFWS) and will depend on the functional values of the

wetlands filled as a result of the project. Actual mitigative activities pursued will be agreed

upon by NASA and the interested resource agencies. The final mitigation plan will be a

requirement of the Section 404 permit issued by the ACOE.

3.4 SURVEYS FOR STATE-LISTED THREATENED OR

ENDANGERED PLANT AND ANIMAL SPECIES

There is a lack of late summer and fall surveys for state-listed threatened or endangered

plant and animal species that may use or reside in the wetlands. Some of these species are

candidates for federal listing or are federally listed threatened or endangered. A first and

important step in dealing with potential or ofl_cially federally listed threatened or

endangered species is obtaining a complete inventory of species inhabiting or using the

project site.

Esher and Bradshaw (1988) conducted rare plant and animal surveys on the ASRM test

site from the end of March through mid-May 1988. Because of the timing required by

NASA for these surveys, plants which appear and/or flower during the summer or late

fall could not be observed. Also, animals that are migratory or difficult to observe in the

spring may not have been recorded. Some of these migratory animals are federally listed

threatened or endangered species (Esher and Bradshaw 1988). The authors also indicated

that some of the nonsurveyed plant species may be listed as Category 1 or 2 species.

Category 1 species are those that are candidates for addition to the federal list of endangered

or threatened plants and for which the evidence of vulnerability or threat is sufficient to

consider them for the list. Category 2 species are also candidates for the federal list of

endangered, or _reatened plants, but require further research to document their

vulnerability. Two Category 2 plant species and no Category I species were located in

spring 1988 on the proposed ASRM test site by Esher and Bradshaw (1988). No animals on

the federal threatened or endangered list were found.

The Federal Endangered Species Act, Section 7, defines inter'agency consultation procedures

and protection requirements that apply to federally listed threatened or endangered species.

These procedures do not apply to candidate species, even on federally sponsored projects

(Thornh_l 1990). However, because there may be changes of status for species listed as

candidates, it is important to know what species occur on a project site. If a Category 1

species becomes officially federally listed, appropriate actions can be taken by the project

proponents.
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Because the biotic inventory for the ASRM site was performed during one season only,

additional surveys will be done in other seasons. The remaining critical season is late

summer and fall. NASA is in the process of conducting a late summer and fall survey for
plant and animal species. Should unanticipated populations of federally listed species be

identified, NASA will develop and implement appropriate mitigative plans. Close
consultation will be maintained between NASA and the U.S. Fish and Wildlife Service

(USFWS) (administrator of the Federal Endangered Species Act) on this subject.
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4.0 SECONDARY IMPACTS TO WETLANDS

FROM ASRM TEST EMISSIONS

The following sections discuss secondary impacts to air, water, aquatic species, plants, soils,
and wildlife from ASRM test emissions. Section 4.1 describes the air dispersion modeling

on which the analysis is based. Section 4.2 discusses predicted impacts under expected
meteorological conditions and Section 4.3 analyzes the resulting impacts if an unexpected
rain were to occur shortly after a test. Finally, Section 4.4 discusses cumulative impacts to
the environment after 30 years of ASRM static testing at SSC.

4.1 DISPERSION MODELING

4.1.1 Introduction

Subsequent to issuance of the FEIS, additional information was obtained on the models
used to predict air quality impacts in the FEIS. This information was used to prepare the

Prevention of Significant Deterioration (PSD) air emission permit application to provide a

comprehensive analysis of the air quality impacts to the Mississippi Bureau of PoUution
Control. Specifically, this evaluation covered four areas:

1) Predicted Exhaust Plume Composition. The predicted composition of the
exhaust plume discussed in the FEIS changed slightly due to refinement of the

motor propellant weight and composition. After the Record of Decision on the FEIS
was issued on April 17, 1989, NASA selected the Lockheed/Aerojet team as the final
design contractor for the ASRM and the associated manufacturing, testing, and

support facilities. The Lockheed/Aerojet team recommended some final design
modifications in the motor, refined the fuel composition, and slightly increased the

total fuel mass to 1.206 million pounds. The ASRM solid fuel specifications had
been based on a sizing parameter of 1.200 mNlion pounds of total fuel mass. These
design modifications resulted in slight increases in the total aluminum oxide and
hydrogen chloride (HCI) predicted (NASA 1990a).

Further, in the FEIS a propellant composition of 16 percent aluminum and not 19

percent, as specified in the final contract, was used in the FEIS modeling

predictions. The corrected model input predicts higher amounts of aluminum oxide
than that presented in the FEIS. NASA has now acquired all models used to
evaluate ASRM exhaust. The corrected model input, which has been closely

scrutinized by NASA, the Mississippi Bureau of Pollution Control, and EPA Region
4, was used to produce the modeling results presented in the PSD application and
this SFEIS.
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In addition, all chlorine species predicted by the plume composition model, such as
hydrogen chloride, monatomic chlorine, and diatomic chlorine, were totaled and
collectively modeled as hydrogen chloride in the PSD application and this SFEIS.

This conservative approach therefore results in an increase in the total effective
amount of hydrogen chloride used to predict impacts.

2) Modeling of the Exhaust Cloud. Since publication of the FEIS, documentation
of the plume dispersion predictions used in the Space Shuttle Redesigned Solid

Rocket Motor static test program in Utah became available. The prediction or
modeling method used in this 1989 action was recommended by EPA Region 8 and

reviewed and accepted by the state of Utah. This permit action set the first
regulatory precedent for predicting dispersion of exhaust products from solid rocket
motors similar to the size and performance characteristics of the ASRM. The

prediction method was a combination of the model used in the ASRM FEIS (to

predict exhaust product composition and quantities and plume rise stabilization

altitude and dimensions) followed by a "puff' model to predict dispersion of the
exhaust products. The revised prediction method was used to prepare the air

emissions permit application submitted to the Mississippi Bureau of Pollution
Control.

3) Possible Wet and Dry Deposition of Exhaust Compounds. Small amounts of
particulate matter from the plume will be deposited at points directly downwind of
the test stand. Additionally, the impacts due to the deposition of exhaust products
(mainly HCf) in rain have also been addressed.

4) Cumulative Impacts of Four ASRM Tests a Year Over 30 Years. The
potential for cumulative impacts due to 30 years of particulate deposition and the
contribution of HCI to the atmosphere have been addressed. The cumulative impact

analyses assume four tests a year for 30 years or 120 tests, although NASA's plans
are to conduct only 64 tests (8 tests in the first two years and two tests a year
thereafter).

The first two areas of evaluation, related to changes in the models and modeling approach,

are discussed below. The results relevant to deposition of exhaust products and cumulative
effects are presented in subsequent sections.

All analysis performed for the SFEIS focused on the fate of aluminum oxide particles and

HCI gas (including all chlorine species with the potential to become HC1 through chemical

reactions in the plume), because these compounds make up the particulates and toxic gas,
respectively, requiring operational and environmental management. Aluminum

chlorides were also evaluated although they will be produced in very small quantities.
Other compounds emitted in large quantities, such as nitrogen oxide and carbon monoxide,

were analyzed earlier and are discussed in the PSD permit application submitted to the
Mississippi Bureau of Pollution Control (NASA 1989b). These compounds in the projected

quantities and concentrations associated with KqRM testing are not a health or
environmental concern and have not undergone further analysis.
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4.1.2 SFEIS Modeling Approach

The impacts to air, soil, water, aquatic life, and w_ldlife from the ASRM test emissions

have been predicted using sophisticated modeling of ASRM fuel combustion, exhaust

plume rise, and atmospheric dispersion. As discussed earlier, the modeling procedure used

in this SFEIS is the same as the one used for preparation of the PSD permit application

(NASA 1989b).

DESCRIPTION OF SRM TESTING

The SRM tests at the Thiokol test complex in Utah have been closely observed and

monitored since 1988. The information gathered during these tests has been used to

develop a modeling approach which closely simulates an actual SRM test under a variety

of meteorological conditions and climates. The following description of an SRM test was

drawn from observations from helicopters, Lear jets, and the ground; exhaust plume

sampling in the path of the plume both on the ground and aloft; and satellite data.

A typical SRM test proceeds in three stages: 1) ignition and firing of fuel; 2) buoyant rise of

the plume to its final elevation; and 3) movement and dispersion of the elevated plume and

transport downwind. The initial stage begins with the motor secured in a horizontal

position. After ignition, the solid fuel begins to burn at a temperature of 6,000°F and

continues to burn for about two minutes until all of the fuel has been used. During the

firing of the fuel, the superheated exhaust is thrust from the nozzle at approximately 5,500

mph. At the Utah test site, the exhaust moved horizontally until it impacted a hill behind

the test stand, at which point the exhaust slowed considerably (to about 700 mph). When

the exhaust encountered the barrier, it was redirected upward (Plates 4-1 and 4-2). At SSC,

a deflection ramp is proposed for the ASRM testing that will function in a similar way (see

Section 4.2.1, Control Technologies/Mitigation Alternatives). After being deflected

upward, the exhaust quickly loses its initial momentum and continues to rise due to the

heat or thermal buoyancy. By the time all of the fuel has burned (about 2 minutes later),

part of the plume has risen to several thousand feet in the atmosphere while the bottom of

the plume is still on the ground.

The second stage of the test consists of the buoyant plume continually rising to its final

elevation. When the plume rises to these higher altitudes, it cools due to the lower

atmospheric pressure and mixes with the ambient air, which further cools the plume.

This process of rising, mixing, and cooling continues until the plume temperature equals

the ambient air temperature. The final elevation at which the temperatures are equal is

called the plume stabilization height or final elevation. Virtually all the exhaust that is

emitted throughout the two-minute burn rises in this way, raising the plume base many

thousand feet above the ground.
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Plates 4-1 and 4-2. SRM static tests at Thiokol Test Complex,
Utah. Photographs show the growth of the
exhaust plume during the first stage of a
static test.
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In the third stage of the test, the plume is blown by the upper-level winds and is dispersed

in the upper atmosphere. When the plume has reached its final elevation and begins

moving with the upper-level winds, it has vertical and lateral dimensions of several

miles. In this stage, turbulence breaks up the plume and mixes it with the ambient air. By

the time the plume has been blown a few miles downwind, it has spread out and broken

up to such an extent that it is no longer vis_le.

MODELING PROTOCOL

The ASRM test is not like an industrial smoke stack or other stationary sources. Models

that are used for these types of emissions would not be appropriate for the ASRM test.

However, the three-stage test scenario can be simulated by combining several different

models into one integrated procedure. The relationships between the various models are

presented schematically in Figure 4-1. In the first stage of a test, the fuel is burned at 6,000°F

producing the thrust and exhaust. The temperature of the exhaust and its chemical

composition have been modeled using one part (the plume composition subprogram) of a

larger program called Products of Combustion/Atmospheric Dispersion (PCAD).

The second stage of the test involves the plume's buoyant rise and initial expansion. These

processes have been modeled using another part (the plume elevation subprogram) of

PCAD. Finally, the transport and dispersion of the elevated plume have been modeled

using a puff-dispersion model, INPUFF 2.3, capable of simulating the dispersion of an

isolated plume at high altitudes.

PCAD MODELING

The PCAD model was developed specifically for predicting exhaust plume composition,

final plume elevation (stabilization heigh0, and initial plume dimensions. The PCAD

model performs these tasks in two separate subprograms.

The exhaust plume composition subprogram is a modified version of a program written at

the NASA Lewis Research Center to calculate chemical compositions of exhaust formed

during a solid rocket motor firing (Gordon and McBride 1976). This subprogram uses

engineering design inputs for the ASRM (i.e., chemical composition of the fuel, chemical

and physical data of the fuel compounds, mass of the fuel, and duration of the firing) to
compute the quantities of each chemical produced and the initial temperature of the plume

0rtgure 4-2).

The plume elevation subprogram computes the altitude of the center of the plume when it

has stabilized and will no longer rise, and the initial dimensions of the plume at its final

altitude. The final plume elevation is calculated by using the Briggs plume rise equation

(Briggs 1975) as modified by the U.S. Army and descn'bed in a report on chemical hazard

prediction (Whitacre and Myirski 1984). The plume elevation subprogram uses the output

from the plume composition subprogram (plume temperature and heat release rate) together

with meteorological data (wind speed, ambient air temperature, vertical temperature profile
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of the atmosphere, and air density which is a function of air pressure and moisture in the

air) to compute the final elevation of the center of the plume (Figure 4-2).

The final and overall vertical dimension (radius) of the plume is estimated as

approximately 75 percent of the centerline stabilization altitude. Since ground-level

concentrations of plume components depend upon the ability of the atmosphere to mix the

plume with ground-level air, the larger the radius or vertical dimension of the plume, the

higher the ground-level concentrations. Use of a large, initial plume dimension is therefore

considered a conservative estimate; that is, a large initial plume dimension may lead to

overestimating ground-level concentrations.

INPUFF 2.3 MODEUNG

The transport and dispersion model, INPUFF 2.3, uses as input the plume composition, final

plume altitude, and plume dimensions predicted by PCAD, together with meteorological

data typical of the SSC vicinity (Figure 4-2). INPUFF 2.3 is a Gaussian dispersion puff

model that is capable of characterizing the transport and dispersion of an instantaneously

released puff of gases and particles. INPUFF 2.3 simulates the dispersion of an isolated puff

as it moves horizontally with the wind. The mathematical equation used by INPUFF 2.3

to compute the concentration distribution in the plume simulates average turbulent mixing

in the atmosphere. Since it is not possible to predict the exact concentration distribution for

a single puff plume, computation of the average concentration distribution is the best

approach (Hanna et al. 1982).

A concentration distribution used in the INPUFF 2.3 model assumes that part of the plume

will immediately reach the ground after it has risen to its final altitude. Observations of

solid rocket motor tests, however, indicate that none of the exhaust plume reaches the

ground in the immediate vicinity (1 mile) of the test site (El Dorado 1990). Given this

actual test information, it appears likely that the model used in the ASRM test analysis

overpredicts the ground-level concentrations, especially close to the test site. Use of the

model therefore gives conservative estimates for this application; that is, any ground-level

concentrations predicted by the model are lkely to be higher than the concentrations that

would actually occur. 1/ The INPUFF 2.3 model generates two-minute average ground-level

concentrations for specified distances downwind of the test stand continuously for 24

hours. These successive two-minute average concentrations may then be used to find the

maximum instantaneous, maximum 1-hour, and maximum 24-hour concentrations.

Additionally, these concentrations may be used to compute the total deposition of

particulate matter at a particular point.

1/ Modeling used for the FEIS was similar to the modeling just described, except that the FEIS
modeling used the PCAD dispersion subprogram in place of the INPUFF 2.3 dispersion model.
The PCAD dispersion subprogram utilizes a continuous point source plume model as opposed
to a puff dispersion model. The FEIS modeling approach is also considered a conservative
approach, and demonstrated that the ground-level concentrations of all constituents would be
below the applicable air quality standards.
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4.1.3 Modeling Inputs end Results

PCAD MODEUNG

The engineering design inputs for the PCAD plume composition subprogram included 1.206
million pounds of solid fuel to be burned in 2.25 minutes among other inputs (El Dorado
1989). PCAD predicts that each test roll generate approximately 216 tons of particulate

matter, mainly aluminum oxide, and 127 tons of HC1 and other chlorine forms in
addition to water vapor, oxygen, nitrogen, carbon dioxide, and trace amounts of other
combustion products. These compounds will be emitted from the nozzle at a temperature of
6,000°F. The exhaust will quickly cool to about 2,500°F at 800 feet down the plume

centefline from the nozzle.

After the exhaust plume has lost its initial horizontal momentum, it will have enough
heat to buoyantly rise about 13,000 feet (final centerline altitude), and will expand into a

spherical cloud approximately 10,000 feet in radius (Table 4-1). These predictions are
consistent with actual observations and measurements of solid rocket motor tests

(El Dorado 1990).

INPUFF 2.3 MODELING

The INPUFF 2.3 modeling utilized the PCAD output (Table 4-1) together with

meteorological data typical of the SSC vicinity (Table 4-2) to compute the ground-level
concentrations at various distances from the test stand. The INPUFF 2.3 modeling was

conducted in accordance with the modeling methodology in the PSD permit application.
Although PCAD predicts only 103 tons of HCI will be produced, all of the chlorine produced
was assumed to react in the plume to form HCI. The dispersion of the HCI, therefore, was
assumed to consist of all chlorine ions (24 tons) as well as the HCI (103 tons), creating a
total mass of 127 tons of HC1. The results of the INPUFF 2.3 modeling are presented in
detail in Section 4.2.1.

4.1.4 Cases Considered in this SFEIS

In the FEIS, the consequences of solid rocket motor testing were evaluated under _expected"

conditions, with testing designed to take place only in favorable weather conditions and
when no rain was included in the short-term weather forecast. These are the test

conditions that prevent most impacts on the environment. While NASA has confidence
in the weather forecasting personnel and sophisticated equipment that will be used for the

ASRM project, it is reasonable to look at potential impacts from testing under "unexpected"
weather conditions.

Since the release of the FEIS, additional modeling has been performed to characterize

potential impacts from ASRM testing under a range of conditions. Two scenarios are
included in this SFEIS and may generally be dassitied as _Expected" (Case 1), and

_Unexpected" (Case 2). The primary reason for looking at two cases is to evaluate the
impacts when it does not rain for at least a few hours after a test (the expected condition,
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Table 4-1. PCAD Model results.

Parameter Value

Total Fuel Mass

Total HCI Emitted

Total Aluminum Oxide Emitted (particles)

Total Aluminum Chlorides Emitted

Final Plume Rise (centerline altitude)

Plume Dimensions (diameter)

1,206,000 Ibs.

254,789 Ibs. (127 tons) a/

432,885 Ibs. (216 tons)

61.5 Ibs (0.03 tons) b/

13,380 feet c/

10,038 feet c/

a/ This figure includes the total HCI and all other chlorine species produced (NASA 1990a).

b/ This figure includes the aluminum chloride oxide and aluminum chloride produced (NASA
1990a).

c/ Using the same meteorological input parameters shown in Table 4-2 along with air density, air
pressure, and other parameters typical of sea level conditions.

Table 4-2. INPUFF Model Input parameters.

Parameter Value

Windspeed (32-foot aerometer height)

Stability Class._ /

Mixing Heightb/

4.5 miles per hour

C (daytime, slightly unstable)

4,621 feet £,,/

=3/ The Stability Class is used as a measure of the abilityof the atmosphere to disperse pollutants.
Stability class "A" represents a high degree of dispersion and stability class "F" represents a low
degree of dispersion.

IE The dispersion of pollutants in the lower atmosphere is greatly aided by the convective and
turbulent mixing that takes place. The vertical extent to which this mixing takes place varies daily
and from season to season, and is also affected by topographical features. The greater the
vertical extent of the mixing layer, the larger the volume of the atmosphere available to reduce
the pollutant concentration. However, for the high final plume elevations associated with the
ASRM plume, a higher vertical extent of the mixing layer may increase ground-level pollutant
concentrations (see Appendix B for explanation). The vertical extent of the mixing layer is called
the mixing height.

£,,/ Average afternoon mixing height for Jackson, Mississippi (Appendix B).
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Case 1) and when it does rain soon after a test (an unexpected condition,Case 2). These two

cases are examined separately, because the resulting impacts are often different As

documented in the following sections, neither case produces any significant adverse

impacts to human health or the environment.

CASE 1 -EXPECrED CONDITIONS

Case 1 examines the consequences of motor testing under expected test conditions. For Case

1 the exhaust plume was modeled using physical and meteorological inputs typical of

coastal Mississippi (Table 4-2). These include light upper-level wind speeds, average air

temperatures and mixing conditions for daytime hours, and no defined wind directions.

The modeled parameters are within the range discussed in NASA's PSD permit application

(NASA 1989b). As part of the PSD permitting process, the Mississippi Bureau of Pollution

Control will define the precise range of weather conditions under which testing will be

allowed.

Case 1 is based on controls designed to ensure that it does not rain in the vicinity of SSC

until the plume has dissipated. NASA originally stated that testing will proceed only

when no rainfall has been forecast for two hours. A two-hour test window in connection

with solid rocket motor testing was first recommended in 1967, following a solid rocket

motor test conducted in Dade County, Florida. The test took place during rainfall and

resulted in acid rain damage to crops (NASA 1978). To ensure that this type of impact is

avoided during ASRM testing, more detailed analysis of the ASRM exhaust plume

dispersion was conducted. The additional analysis indicates that a 2- to 4-hour no-rain test

window, depending on wind speeds, would be a more conservative and appropriate

window to ensure negligible impacts on rainfall acidity. A 2- to 4-hour, no-rain test

window is well within the weather forecasting ability of the planned ASRM weather

forecasting support system.

CASE 2 - UNEXPECTED CONDITIONS

Case 2 is based on the unlikely assumption that short-term weather forecasting efforts

break down and that a significant rain event occurs shortly after testing. For this case,

several conservative assumptions were made: 1) the rain cloud forms at the same location

as the exhaust plume, 2) the exhaust plume is entirely taken into the rain cloud, and

3) the rain cloud size is typical of coastal Mississippi and enough rain falls so that all of the

acid in the exhaust plume is removed by the rain and falls to the ground in raindrops. The

particular scenario examined in this SFEIS includes a large rain event I hour after the test.
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4.2 IMPACTS UNDER CASE 1 CONDITIONS

4.2.1 Air Quality

INTRODUCTION

The air quality impacts due to ASRM testing have been evaluated for the two cases

described in Section 4.1.4 using the modeling methodology discussed in Section 4.1.2. The

modeling results presented below indicate that air quality impacts are well below federal

and state air quality standards.

MODELING RESULTS: CASE 1

The results of the INPUFF 2.3 model indicate that the exhaust plume will move as a

slowly dispersing sphere at the speed of the upper-level winds. The model predicts that the

plume will rapidly mix with air at the ground and that low concentrations of HCI,

aluminum oxide, and aluminum chlorides will remain at ground level for short periods of

time as the plume moves overhead.

Time-averaged concentrations, such as the 1-hour and 24-hour averages, may be calculated

for various distances from the test stand (Table 4-3). Table 4-3 presents the predicted

maximum, 1-hour, and 24-hour average concentrations for HCI, aluminum oxide, and

aluminum chloride at 0.6, 3, 4.2, 6, and 12 miles from the test stand.

Table 4-3 also compares the predicted ground-level concentrations to applicable federal and

state regulations. The air concentration of HCf will be well below the applicable 1-hour and

24-hour standards. There are no air quality standards set specifically for aluminum oxide

and aluminum chloride, because they are covered by general National Ambient Air

Quality Standards (NAAQS) pertaining to all particulates. Aluminum oxide and

aluminum chloride concentrations were therefore added to the background concentration

of particulates already in the atmosphere to arrive at a total value to be compared to the

standard. The maximum ground-level concentrations of aluminum oxide and aluminum

chlorides, when added to the background level of particulates in the atmosphere, are

predicted to be below the applicable regulatory standards (Table 4-3).

The values shown in Table 4-3 are those predicted by the INPUFF 2.3 model, and they

represent the predicted concentration of HCI, aluminum oxide, and aluminum chloride in

the air at ground level. The same model was used to estimate deposition, or the amount of

material that would be deposited on the ground, on plants, in surface waters, or on other

surfaces. Predicted deposition rates are very dependent on the interaction of various

elements in the exhaust plume, as described below.
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Hydrogen Chloride Gas

HCf will be emitted as a gas from the motor nozzle. Although HCI is very soluble in water,
it does not deposit readily onto dry aerosols or other dry surfaces when the relative

humidity is below 100 percent (Cocks and McElroy 1984). Because the atmosphere under

Case 1 conditions would have a relative humidity lower than 100 percent, direct dry
deposition of HCI gas onto the ground and vegetation would be insignificant.

Hydrogen Chloride Aerosols

Acid aerosols 1/naturally exist at coastal locations such as SSC due to the emissions of
sulfurous and nitrous gases and particles from natural and man-made sources. The high

relative humidity near the ground at SSC means that the acid aerosols will be aqueous
aerosols.2/ Since HCf is soluble in aqueous aerosols, the HCI gas from a test firing would

dissolve in the existing aqueous acid aerosols 3/and the dissolved HCI would tend to
increase the acidity of the affected aerosols (NASA 1990a; Sebacher et al. 1984). When the

relative humidity near the ground is high (greater than 90 percent), most of the HC1 near

the ground will be dissolved in aerosols (Cofer et al. 1985; Anderson 1983). The HC1
concentrations in aerosols near the ground would then be equal to the ground-level HCI

concentrations given in Table 4-3.

Emissions of sulfur dioxide and nitrogen dioxide from man-made sources (e.g., power
plants, industrial boilers, automobiles) in southern Mississippi are primarily responsible for

the background acid aerosol concentration at SSC (EPA 1988b). These existing sulfur

dioxide and nitrogen dioxide concentrations are well below the regulatory standards in

Mississippi (MBPC 1988), even though they produce acid aerosol concentrations that are

much higher than the temporary HC1 aerosol concentrations produced by an ASRM test.
This can be demonstrated by comparing the 24-hour sulfur dioxide concentration as

measured at Gulfport, Mississippi (45 miles east of SSC) of 0.15 mg/m 3 to the maximum 24-

hour HC1 concentration estimated for the ASRM of 0.0088 mg/m 3 (see 24-hour maximum

concentration at 4.2 miles, Table 4-3). HC1 from the ASP,M, therefore, will constitute an

insignificant fraction of an already acceptable acid aerosol concentration.

The deposition rate of HCl aerosols is very low due to their small size (Hanna et al. 1982;

Reist 1984). Since the ASRM exhaust plume will pass over any one point in about two
hours with exhaust product concentrations below federal and state standards which were

1/

2/

3/

The term aerosols refers to small (less than 100 gm) solid and liquid particles suspended in the
air. The mean size of acid aerosols is 0.2 tan. Raindrops, which are near a millimeter in size or
more, and rapidly fall to the ground, are not called aerosols. A micrometer (am) is equal to a
millionth of a meter. See Glossary for explanation of relative particle sizes.

Aqueous aerosols are particles composed of water and dissolved compound(s) such as sulfates
and nitrates.

Only the aqueous aerosols in relatively high humidity near the ground would be capable of
absorbing significant quantities of HCI.
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set to be protective of human health and the environment, the HCI aerosol deposition onto

the ground, vegetation, and other surfaces (e.g., automobiles and houses) will be

insignificant Therefore, no impacts due to deposition of acid aerosols on automobiles and

houses are expected as a result of the testing. 1/ The cumulative HCI deposition impacts

from 30 years of testing and the long-range fate of the HCI are discussed in Section 4.4.

Aluminum Oxide

The ambient air concentrations of aluminum oxide were modeled similarly to the HCI

concentrations (Table 4-3). For a monitor stationed 6 miles downwind from the test stand,

the aluminum oxide concentration would reach a peak of 0.36 mg/m 3 after about one hour.

The concentration would then fall again to zero after about two hours. The 24-hour

average concentration of aluminum oxide at the 6-mile monitor would be 0.015 mg/m 3

(Table 4-3).

In addition to the suspended particle concentrations, some of the aluminum oxide would

deposit onto the ground, plants, and other surfaces. The total deposition was calculated

from the INPUFF 2.3 model results at five downwind locations assuming an average

particle diameter of 2 gm (Cofer et al. 1987). The total aluminum oxide depositions at 0.6, 3,

4.2, 6, and 12 miles from the test stand are depicted graphically in Figure 4-3. The amount

of aluminum oxide deposition at a certain point downwind will depend upon the

concentration in the air and length of time the exhaust plume is over that point. For

example, a deposition monitor at the point of maximum deposition (4.2 miles) would

measure a total aluminum oxide deposition of 1.56 mg/m 2 (Figure 4.3, Table 4-4).

Aluminum Chlorides in Motor Exhaust

Approximately 90 pounds of aluminum compounds other than aluminum oxide are

created during the firing of a motor. These include 61.5 pounds of aluminum chlorides

(AIC10 and A1C13), which represents about 0.01 percent of all aluminum compounds in the

exhaust plume. The ground-level air concentrations and depositions of aluminum

chlorides are given in Tables 4.3 and 4-4, respectively.

Aluminum Chloride Formation in the Plume

The formation of aluminum chlorides in the atmosphere after the plume has been emitted

from the motor depends upon chemical reactions between the HCI gas, water vapor, and

aluminum oxide particles. The combustion component of the PCAD model computes the

quantity of aluminum chlorides produced at 6,000°F during combustion, but does not

consider chemical reactions that may occur after the plume has cooled. The subsequent

1/ There have been a few claims of damage to automobile paint coats at KSC, Florida, over the life of
the Shuttle hunch program, but none has been substantiated (NASA 1990c). The hunch
complex is cooled by a large volume of water which causes immediate acid deposition at KSC.
Cooling water will not be used at SSC.
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Table 4-4. Predicted depositions of aluminum oxide and aluminum chloride

partlclea at five locations downwind from the teat stand.

Distance from Test Stand

(Deposition in mg/m2)

Compound 0.6 mile 3 miles 4.2 miles 6 miles 12 miles

Aluminum Oxide 1.07a/ 1.53 1.56 1.54 1.46

Aluminum Chlorides 0.00016&/ 0.00022 0.00023 0.00023 0.00021

a/ The deposition of aluminum oxide and aluminum chlorides depends upon the air concentrations

and the time the plume is over a specific location. Although plume concentrations are highest
initially, the plume actually spends less time over locations at 0.6 mile and 3 miles downwind from
the test stand than at 4.2, 6, or 12 miles. The resulting deposition at 0.6 mile and 3 miles,

therefore, would be lower than at other locations. Although the plume spends the same amount
of time over 6 miles and 12 miles, the deposition at 12 miles would be lower than at 6 miles,
because the air concentrations would be lower at 12 miles than at 6 miles.
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reactions in the cooling plume that may lead to the formation of aluminum chloride are
considered below.l/

Under expected conditions, water vapor may exist in the ambient air, the amount
depending upon the absolute humidity in the air. The formation of aluminum chloride

requires a reaction between an aluminum oxide particle, HCI molecules, and water
molecules. Water vapor molecules (H20) must first react with the HCI molecules to form
compounds which can then react with the aluminum oxide (A1203) to form aluminum

chloride (AICI3). The reactions to form aluminum chloride may be combined and
summarized as follows:

6 HCI + 6 HzO + AlzO3(s) --. 2 AICI3(s) + 9 H20 [Reaction 4-1]

The probability of this reaction occurring is evaluated by considering the thermodynamics

involved 2/, the air temperature, the air pressure, and the concentrations of the compounds.

For the conditions associated with a buoyantly rising plume still near the ground, the

reaction is not thermodynamically favored (CRC 1989). As the plume ascends and the

pressure and temperature drop, the reaction is even less likely to occur. Thus, the
compounds in the exhaust plume will not tend to form aluminum chloride after the initial

combustion phase.

The presence of chlorides has been noted in chemical analyses of powders deposited on the

launch facility and on the ground immediately adjacent to the launch facility at KSC

following Space Shuttle launches, and similarly noted in some airborne samples of the
exhaust plume (Corer et al. 1984). Corer interpreted these data to demonstrate the formation
of aluminum chloride in the exhaust plume, but did not present a detailed mechanism for

their formation or an analysis of their chemical form. As demonstrated by the PCAD
modeling, however, small amounts of aluminum chloride are expected to be produced as a

product of combustion, thereby explaining deposits of chlorides on the ground and launch
facility. The chlorides found in the airborne samples of the Space Shuttle exhaust are also
expected since the Shuttle SRMs will continue to produce chlorides as the Space Shuttle
rises into the air, until all the fuel has been burned. The analysis presented in this SFEIS is

therefore based on the foregoing description of aluminum chlorides formed solely by
combustion, and not on the theory that they are formed in the exhaust plume.

1/

2/

The formation of aluminum chloride oxide (AICIO) is assumed to be similar to aluminum
chloride. Therefore, only aluminum chloride formation is analyzed here.

The "thermodynamics" of the reaction refers to the energy required for the reaction to occur. In
general, reactions that are thermodynamically favored (likely to occur) have a negative free
energy of formation; that is, they do not require a supply of additional energy in order to occur.
Reactions that are not favored (not likely to occur) have a positive free energy of formation.
Chemicals with a positive free ener_ of formation will not react with each other without the
supply of additional energy. For Reaction 4-1 at sea-level pressure and 80°F, the free energy of
formation is positive (90 calories), indicating the reaction is not likely.
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CONCLUSIONS

Air quality modeling using the PCAD and INPUFF 2.3 models indicates that HCI,

aluminum oxide, and aluminum chloride produced by ASRM tests under expected

conditions will occur in ground-level concentrations well below state and federal air

quality standards. These standards exist to protect human health and the environment

Only small amounts of both aluminum oxide and aluminum chloride will be deposited

on the ground and other surfaces. Therefore, no adverse impacts to human health or the

environment are projected under expected conditions.

COMPARISON OF SFEIS RESULTS TO FEIS RESULTS

As discussed earlier, the modifications to the fuel mass and modeling from the FEIS to

SFEIS result in a slightly different emissions estimate (Table 4-5).

Using these emissions estimates along with the more applicable puff dispersion model,

INPUFF 2.3, for the PSD application and SFEIS modeling resulted in lower ground-level air

concentrations for both HCl and aluminum oxide than predicted in the FEIS using the

plume (PCAD) dispersion model alone. Since INPUFF 2.3 allows tracking of the exhaust

plume from the test stand, average ground-level air concentrations may be more easily

evaluated at specific points downwind of the test stand. This is important in evaluating

human exposure and potential health effects (Section 5.0). The more realistic dispersion

predicted by INPUFF 2.3 indicates that the total time of exposure to ASRM test emissions at

any point away from the test stand would only last for a period of about two hours, based

on a conservatively low ground-level wind speed of 4.5 miles per hour (2 m/s).

CONTROL TECHNOLOGIES/MITIGATION ALTERNATIVES

Various emission control systems and mitigative measures were studied to determine if

they could be used to further reduce concentrations of HCI, aluminum oxide, and other

exhaust products. Control technologies are used to either prevent the emission of air

pollutants or reduce the quantity of air pollutants emitted. Mitigative measures reduce the

potential impact of the emissions by increasing dispersion, which reduces the

concentration of pollutants in the atmosphere. This section summarizes the findings of

those studies.

Control Technologies

Several technologies were investigated to determine if they could be used to control

emissions. These include wet and dry scrubbing, off-horizontal firing, and a deflection

ramp.

Wet Scrubbing. Preliminary study of a wet scrubbing system indicates the system

would require the construction of a spray chamber that would be capable of delivering

approximately 10 million gallons of water in a 2- to 3-minute period (Sverdrup 1990).
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Table 4-5. Combustion products of ASRM fuels.

OtJ_ Produced(Pounds!
Reportedin
SFEiSand

Reported PSDPermit
Compound inFEIS Application

HCI 228,386 254,789a/

AluminumOxide 362,773 432,885
-k

Aluminum Chlorides Not reported 61.5 t:)/

a/ This figure includes the total HCI and other chlorine species produced.

b/ This figure includes the total aluminum chlodde and aluminum chloride oxide produced.

When the rocket motor was fired, the exhaust plume would exit the motor and enter the

spray chamber, where water from concentric spray Hngs would wash the HC1 from the

plume. The water containing the HCI, including mist, would be collected in concrete

holding tanks for subsequent treatment. 1/

The plume resulting from wet scrubbing ASRM exhaust would be saturated with the

water vapor and would exit the spray chamber near ambient temperatures. At ambient

temperatures, the plume would not rise buoyantly in the atmosphere. Since the scrubbing

and filtration process is not 100 percent efficient, the plume would still contain some HCI

gas and acidic mist droplets. The HCf gas and acid mist in the nonbuoyant plume would

remain close to the ground and could settle onto the son, surface water, plants, and other

objects in the vicinity. Assuming a 90 percent removal of HCI using the wet scrubbing

system, the ground-level air concentrations of HCI gas in the low-level exhaust plume

could be significantly higher than the concentration predicted for the proposed test without

a scrubber. Since a ground-level plume would disperse very slowly, the existing scrubber

technology would result in increased environmental impacts.

1/ This wet scrubbing system is different in concept and design from the water deluge system used
at KS(: during Space Shuttle launches. The water deluge system at KSC is used to cool the
launch platform during the launch of the Space Shuttle. The water deluge system is not used to
clean the motor exhaust. In addition, over 50 percent of the deluge water sprayed during the
launch evaporates, producing water vapor which cannot be captured.
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Further evaluations were made to determine if existing scrubber technology could be
improved upon to serve the needs of the ASRM program. It was determined that the
problem of releasing the plume in a saturated condition could be theoretically minimized

by testing the motor in an enclosed system (NASA 1990a). However, the largest motor
ever tested in such a facility contained 50,000 Ibs of solid propellant. The ASRM motor
contains 24 times the amount of solid propellant and has a mass flow ten times greater.
This type of facnity for the ASRM would be cost-prohibitive. More importantly, the

effectiveness of this approach for reducing emissions is unknown. Additional known
adverse environmental impacts of wet scrubbing include the production of vast quantities
of scrub water that would have to be treated, and the production of a sludge which would
have to be disposed of properly. Finally, the large size of the facility would require clearing
and filling additional wetland areas. In summary, the negative impacts along with the

unknown effectiveness of this technology for ASRM rule it out from further consideration.
The concept of wet scrubbing would require additional intensive research and
development, and the technology would have to be proven in p_ot-scale testing before it
could be implemented on static testing of a solid rocket motor the size of the ASRM.

Dry Scrubbing. Dry scrubbing is a control technology involving the chemical
neutralization of the plume by passing it through a neutralizing filter medium, such as
limestone or alumina (NASA 1990a). Subsequent particle collection in dry scrubbers is
usually accomplished by electrostatic precipitation or baghouse filtration. Application of
this technology to ASRM testing would be particularly difficult due to the heat content, the

kinetic energy, and the size of the plume. For example, the maximum temperature which

a baghouse can handle is approximately 500°F (Perry and Chilton 1973) and the
maximum temperature which an electrostatic precipitator can handle is approximately
800°F (Perry and Chilton 1973). The plume temperature would be substantially higher

than this (6,000°ID and, therefore, this technology is not considered feasible.

Off-Horizontal Testing. Off-horizontal testing is a concept that includes inclining the

motor on an angle and directing the exhaust away from the ground. Redirecting the

plume minimizes the amount of soil entrained in the plume, thereby reducing particulate
emissions (NASA 1990a). However, all of the information required from the test firing

could not be obtained if the solid rocket motor were tested in this position. The purpose of
test firing is to evaluate the various motor controls, thrust operation, and electronic ignition
equipment. If the motor were inclined or vertical, the axial thrust produced would consist
of a weight component and a thrust produced from the propellant burn. As the propellant
burned, the weight component would change, resulting in an incorrect thrust

measurement. In addition, molten slag could burn through the nose portion where the
majority of the electronic controls are located, and possibly destroy mechanisms which

require inspection to verify performance once the test firing is complete. Off-horizontal

firing is therefore not applicable to ASRM testing, since it would not meet the objectives of
the test firing program.
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Deflection Ramp. As noted earlier in this section, the extreme heat of the rocket motor
exhaust will cause the plume to rise rapidly. A deflection ramp located behind the motor

will act essentially as a firewall, redirecting the kinetic energy of the plume from

horizontal (along the ground) to vertical (into the air). The deflection ramp may not affect
the final height to which the plume rises since the final height depends on the thermally

buoyant rise of the plume to the point at which the plume temperature equals the
surrounding air temperature. However, the ramp roll substantially decrease the quantity
of soil entrained in the plume, and it m'll increase the rate of plume dispersion. Because the

deflection ramp will result in reduced environmental impacts and is technologically

feasible, use of a deflection ramp was selected by NASA as the best available control

technology. A conceptual description of the ramp was included in the FEIS. The ramp

design is the respons_nity of the Lockheed/Aerojet team (NASA 1990a). The final
configuration and dimensions indicate a ramp approximately 360 feet long and varying in
width from 80 feet at the end of the test stand to 200 feet at the furthest point from the test

stand. The first 250 feet of the ramp will be flat. The ramp will then curve upward to a

height of 60 feet above the flat portion of the ramp. The ramp will have a concrete surface
and will be surrounded by a berm about 10 feet wide and a ditch about 10 feet wide. Water
runoff from the test stand and ramp will be controlled and directed to a discharge pond.
Discharge of this runoff will require a modification of SSC's NPDES permit from the

Mississippi Bureau of Pollution Control. This permit modification was applied for in June
1990.

Mitigative Measures

In addition to air pollution control technologies, measures which could theoretically be
used to mitigate impacts of the air emissions on land were also evaluated. These measures

include off-shore testing and testing only during a prescribed "weather envelope."

Off-Shore Testing. An off-shore test platform was evaluated as a way to limit the
exposure of terrestrial flora and fauna. Off-shore testing has several serious technical
drawbacks, including the need for a separate platform for the test control center and

personnel, and the logistical concerns associated with delivering and servicing the rocket
motors at sea. The most serious technical drawback to off-shore testing is the need for an

absolutely rigid test stand. Thrust matching between the two Shuttle boosters is a very
critical performance parameter in ensuring vehicle control during ascent. Although an off-

shore structural system could be stabilized to handle a 3.5 million pound thrust, the
structural system could not economically be made with the required rigidity to avoid
compromising the accuracy and precision of the thrust measurement data. This approach
is therefore not considered feasible for the ASRM testing, because it could not meet the

objectives of the test firing program.

Weather Envelope. The dispersion models indicate that the concentration of emissions
from the test are greatly influenced by the meteorological conditions that exist during the

firing period. In fact, it is possible to substantially reduce potential environmental impacts

by performing the ASRM tests under specific meteorological conditions. These specific

meteorological conditions define a weather envelope which would reduce the ground-level
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air concentrations of exhaust products, reduce the dry deposition of aluminum oxide and

aluminum chlorides, and prevent the deposition of HC1 in rain. These measures may be

achieved by testing under the meteorological conditions descn'bed in the PSD application.
In addition to the wind and vertical temperature profile requirements, a short-term
weather forecast of no rain for at least 2-4 hours after the test would also be required,

depending on wind speed and atmospheric stability class. This would allow the plume to
dissipate to such a degree that any rain after the 2- to 4-hour period would show no
measurable increase in acidity due to HC1 in the plume. To ensure that ASRM testing will
produce the least poss_le impacts on the environment, NASA has adopted this concept.
The meteorological conditions under which NASA will test the ASRM will be specified by

the state of Mississippi as part of the PSD permit for which NASA has applied.

4.2.2 Surface Water

INTRODUCTION

This section explains the existing surface water conditions near SSC and the impacts due to
ASRM testing under Case 1 meteorological conditions. Additionally, this section discusses
the physical and chemical processes which govern the Case I impacts.

For this analysis, the constituents of interest in ASRM exhaust were grouped into two

categories: 1) hydrogen ions (acid), and 2) aluminum compounds.

HYDROGEN ION

Chemical Principles: Hydrogen Ion

Acidity is an expression of hydrogen ion concentration and is measured in pH units. The
pH scale ranges from 0 (most acidic) to 14 (least acidic or most basic). Values of pH near 7

are considered neutral, i.e., neither acidic nor basic. HC1, one of the exhaust products
resulting from test firing the ASRM, is an acid. Effects of acid deposition into surface

waters are dependent upon the characteristics of the acid fallout (such as pH and volume)
and the surface water (such as pH, volume, and neutralizing capability). Such neutralizing

capab_ity, also known as buffering, is a result of the degree of alkalinity in the waters and

soils. The neutralizing capability of the surface waters and soils is critical to determining
the effects of acid deposition.

Surface water systems are dynamic, and their acidity is constantly being neutralized by
several chemical compounds naturally present. The capability of surface waters to
neutralize acidic inputs depends on the concentration and form of chemicals that contribute

to alkalinity. Alkalinity generally refers to the neutralizing capability of waters, and

may be approximated as follows:

1 Calcium Carbonate + 2 Hydrogen Ions -* 1 Calcium Ion + 1 Carbon Dioxide + 1 Water
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The equation indicates that each unit of calcium carbonate combines with two units of

hydrogen ion to form calcium, carbon dioxide, and water;, that is, the acidity of the water

is decreased by the removal of hydrogen ions. Measurements of alkalinity are expressed in

milligrams of calcium carbonate per liter of water (rag CaCO3/1); hereafter referred to as

=units".

Existing Conditions: Hydrogen Ion (pH)

The water quality monitoring program now at SSC is conducted by NASA, and includes

monitoring temperature, dissolved oxygen, pH, and other parameters. Data from late 1985

to mid-1988 were presented in the FEIS for various points in the Pearl River and Access

Canal Spillway. Reported pH values ranged from about 5.5 to just over 8, depending on the

monitoring point. In support of this SFEIS, water samples were collected at several

additional points in and around SSC in April 1990 (Figures 4-4 and 4-5). The samples

indicate a wide range of pH values of the surface waters (Table 4-6) from 4.6 at Standing

Pine Bog to 7.1 at Lion Branch, with the geometric mean pH of all sampled sites equaling

6.1. Thus, both the long-term monitoring data and the small 1990 sample data indicate the

waters in and around SSC are slightly acidic. The acidic nature of these waters is expected

due to the high organic acid content in southeastern U.S. surface waters. Given the natural

acidic nature of these surface waters, investigations focused on the ability of the waters to

neutralize any additional acid inputs.

As noted earlier, the effects of acid deposition depend upon the alkalinity of the receiving

water body. The existing monitoring program at SSC does not report alkalinity.

Therefore, the eight samples collected at SSC in April 1990 were analyzed for alkalinity.

Alkalinity values for SSC waters ranged from 5 units at one unnamed site (hereafter

referred to as "northern branch of Devil's Swamp") to 124 units at Lion Branch. The

average alkalinity at all sampled sites equaled 24.7 units. Alkalinity and pH data were also

obtained for the groundwater supply for the Red Fish Hatchery. The Red Fish Hatchery is

located within the SSC buffer zone approximately 3 miles northeast of the ASRM test

stand. Table 4-6 summarizes the site-specific water quality data, including alkalinities.

The low alkalinity measured in the sample from the northern branch of Devil's Swamp

(5 units) indicates a potential for pH depression (increased acidification) due to acidic inputs.

An alkalinity of 5 units is calculated to have the capability of neutralizing 0.0001 unit of

hydrogen ion/] of water (see Appendix C). The average (geometric mean) alkalinity at all

sampled sites equaled 24.7 units, corresponding to a neutralizing capability of 0.0005 unit of

hydrogen ion. As the alkalinity is increased from 5 to nearly 25 units, approximately five
times more acid can be neutralized.

Predicted Conditions: Hydrogen Ion (pH)

Exhaust plume modeling has determined that where rain is not present (Case 1), no acid

would be deposited and no change in the pH of surface waters would occur.

4-25



i I

/

\

.g
U.

4-26



\\1 '

I •

4-27



Table 4-6. Surface Water Quality Data, Stennle Space Center, Mississippi,
April 1990.

Aluminum (ma/l_ Alkalinity

Site Total Dissolved pH a/ (mg CaCO3/I) b/

Alligator Branch 1.30 0.48 6.1 31

Access Canal 1.50 0.71 6.8 34

Northern Branch

Devil's Swamp 0.87 0.53 5.8 5

Devil's Swamp 0.10 0.07 6.5 45

E. Pearl River 2.00 0.44 6.3 12

Lion Branch 4.60 1.60 7.1 124

Standing Pine Bog 3.10 0.53 4.6 20

Wolf Branch 1.40 0.62 5.6 20

Geometric Mean 1.30 0.48 6.1 24.7

Red Fish Hatchery c/ NA NA 5.4 166

a/ pH values rounded to nearest 0.1 unit, EPA method 150.1

bl EPA method 310.1

c.J Red Fish Hatchery water quality data analyzed on June 16, 1988. Supplied by
R. Hunt. NA = not analyzed.
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ALUMINUM

Chemical Principles: Aluminum

The other major exhaust product of concern is aluminum oxide, one form of aluminum.

The chemistry of all forms of aluminum in surface waters is more complex than that of

many other metals because of several properties, including the following:

Aluminum is more soluble (more easily dissolved, and hence more likely to be

bioavailable) in acid (i.e., pH less than 4.0) and basic (i.e., pH greater than 8)

solutions than in solutions with a near-neutral pH (i.e., between 6 and 8).

Bioavailability refers to those chemical forms that can be taken up by aquatic

organisms. Only bioavailable forms have the potential to cause harm to aquatic

organisms.

• Some ions that may exist in surface waters, such as chloride, fluoride, and nitrate

form soluble complexes with aluminum.

Fulvic and humic acids (acids commonly found in nature as the result of

decomposition of dead organisms or other organic matter, especially leaves) form

stable, essentially nontoxic complexes with aluminum.

Hydroxide ions can combine with aluminum ions and form both soluble and

insoluble (potentially toxic and nontoxic) polymers (chains of molecules attached in

a repetitive sequence).

• Aluminum and water approach equilibrium (chemical stability) relatively slowly

(EPA 1988a).

Most of the properties stated above are pH dependent, and therefore an understanding of

aluminum/pH interactions is important to accurately determine the effects of acid and
aluminum in water.

Aluminum is the most abundant metallic element in the earth's crust, but the free metal

(i.e., Al) is not found in nature because of its tendency to combine with other chemicals

(Bodek et al. 1988). Aluminum can exist in many forms or species, with speciation and

solubility being pH dependent. The solubility of aluminum increases exponentially with

decreasing (and increasing) pH as compared to neutral solutions (EPA 1988a). Soluble

aluminum is that part of the total aluminum that may be partially bioavailable and

therefore potentially toxic to aquatic organisms, such as fish. It is important to note that

the term "toxic" refers to the potential for a chemical (including metals) to harm aquatic life

if the chemical is present at high enough concentrations and if it is in a bioavailable form.

It does not mean that any amount of the metal is harmful.
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Chemical Forms of Aluminum

As stated above, aluminum can exist in many forms or species. Some of these species are
known to be toxic while others are harmless. Seip and others (1984) stated that the most
toxic species of aluminum are the simple hydroxides, while organically bound aluminum

and polymer species are either less toxic or essentially harmless. One form of aluminum is
aluminum oxide. Under natural conditions, aluminum oxide is not a source of toxic

aluminum species due to its stability. Therefore, this form is not bioavallable.

The majority (more than 99 percen0 of aluminum in ASRM exhaust is present as
aluminum oxide. All the aluminum oxide in the exhaust is nonfibrous (Corer et al. 1987).

EPA has determined that nonfibrous aluminum oxide is nontoxic (EPA 1990). Thus, the
predominant aluminum form present in the ASRM exhaust would be harmless in its
initial state. In addition to looking at the initial form of aluminum oxide in the emissions,

the remaining fraction of aluminum forms present in the exhaust and of chemical
reactions that could alter the form of the aluminum oxide were evaluated.

The aluminum oxide that is present in ASRM exhaust exists in two predominant forms
called alpha and gamma. Alpha and gamma are chemistry terms that refer to the physical
structure, or orientation in space, of a compound. Over 72 percent of ASRM aluminum

oxide measured during Space Shuttle launches was found to be the alpha form (Corer et al.
1984). The alpha form of aluminum oxide is insoluble in both water and hot concentrated

acids (Cofer et al. 1984). This means it would not react to form potentially harmful

aluminum forms. The gamma form is insoluble in water but contrasts with the alpha
form because it can be solubnized with acids. The gamma form of aluminum oxide may

be solubilized under acidic conditions and may be converted to a biologically available
form. Cofer et al. (1984) verified that water soluble forms of aluminum oxide resulted after

exposure of gamma aluminum oxide to gaseous HCI and water mixtures. The conversion

of gamma aluminum oxide to water soluble forms is dependent on the acidity of the

environment that it is in. That is, a higher percentage of the gamma aluminum oxide
would be converted to a soluble form in a very acidic environment than would be
converted in a less acidic environment.

Existing Conditions: Aluminum

To determine the form and amount of aluminum compounds that already exist in the
environment around SSC, water quality samples collected at SSC in April 1990 were
analyzed for total and dissolved aluminum. Total aluminum includes species that are

soluble and potentially bioavailable (such as the gamma forms and chlorinated aluminum
compounds) and those that are insoluble and not bioavailable. Measurements of dissolved

aluminum are better than total aluminum measurements for indicating bioavailability
and the potential to harm aquatic organisms. While the amount and form are important,
this information alone is not adequate to predict toxicity. For example, even within the
dissolved fraction, both bioavailable and organic acid-complexed species that are not
bioavailable are commonly measured. The organic acid-aluminum complexes are
considered nontoxic (EPA 1988a).
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As noted in Table 4-6, total aluminum concentrations of surface water samples collected at

SSC in Apr_ 1990, ranged from 0.10 to 4.60 rag/l, with a geometric mean of 1.30 mg/1.
Dissolved aluminum concentrations in the samples ranged from 0.07-1.60 mg/l, with a
geometric mean of 0.48 rag/1. These data indicate high levels of aluminum under existing
conditions, the mean dissolved concentration of aluminum at SSC, 0.48 rag/l,

substantiatly exceeds the mean of U.S. surface waters, 0.74 mg/l (Bodek et al. 1988).
Naturally occurring high aluminum levels in surface waters are common in the acidic
waters of southeastern swamps and marshes. Whether the natural levels of aluminum

may be suflidently high to affect aquatic life is assessed on a site-specific basis. On the basis
of existing measurements, it is not possible to state how much of the dissolved aluminum

present is the organic-acid complex (and thus nontoxic) form. However, the presence of
aquatic life in sampled waters from SSC which contain high levels of organic acids and
high dissolved aluminum concentrations suggest that most of the aluminum present is in
the complexed benign form. Although the presence of aquatic life does not ensure a healthy
ecosystem, there are no indications that the aquatic environment in and around SSC is

stressed in any observable manner.

Predicted Conditions: Aluminum

The analysis of aluminum deposition from ASRM testing considered all known toxic and

potentially toxic species of aluminum. The deposition of aluminum oxide due to test firing
the ASRM, modeled under Case 1 conditions, led to a predicted deposition of aluminum

oxide equal to approximately 1.07 to 1.56 mg/m 2 (Table 4-4). As noted earlier, aluminum

oxide is not considered toxic under natural conditions but may contribute potentially
harmful species of soluble aluminum forms under acidic conditions (Corer et al. 1984).

Evidence is sparse for toxicity determinations of aluminum compounds other than those
known to be toxic (i.e., free aluminum, soluble hydroxy complexes, and complexes with

chloride). Because data are lacking for other aluminum compounds, this analysis

conservatively assumed that these other aluminum species would be potentially soluble
and therefore toxic if the possibility existed for chemical reactions to generate known toxic
soluble species.

Because aquatic environments are chemically complex, calculating expected changes

within the surface waters requires constraining the less critical variables and

concentrating on those variables that are expected to have major influences on the system.

These constraints, or assumptions, follow:

• Assume that the small percentage of aluminum compounds other than aluminum

oxide present in ASRM exhaust are potentially toxic.

• Assume the ratio of aluminum oxide to other aluminum compounds present in

ASRM exhaust remains constant.

• Assume aquatic toxicity of aluminum compounds is directly related to the release of
free aluminum ions.
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Some aluminum can be mobilized from sediments and soils under acidic conditions, with

the degree of mobilization being ptt dependent in most cases. Maximum mobilization is
expected at pH below 4.0, with decreased mobilization expected as acidity decreases; i.e., at
higher pHs. The mobilized aluminum forms strong complexes with hydroxide, fluoride,
sulphate, and dissolved organic ligands (DriscoU et al. 1980). The organic ligands include

humic and fulvic acids, which are a common constituent of acidic surface waters,
especially swamps and bogs. The waters and soils of SSC are relatively acidic due to these
acids. It is expected that some of any additional aluminum entering surface waters as a
result of ASRM testing would be complexed by the organic acids. The organic
acid/aluminum complexes that formed would result in decreased availability of

aluminum to aquatic life, minimizing any potential for impact.

Exhaust plume modeling predicted aluminum chloride depositions that ranged from
0.00016 to 0.00023 mg/m 2 (Table 44). The maximum deposition of 0.00023 mg/m 2 of
aluminum chloride, added to typical surface waters, results in augmenting aluminum
concentrations in the water by less than 0.000001 mg AI/I.

It is difficult to quantify the portion of aluminum oxide that reacts with HCI to form
additional toxic aluminum species. The most conservative approach assumes that all of
the aluminum oxide deposited has reacted with HC1 (i.e., disregarding the probable
chlorination of only the gamma portion of aluminum oxide). With this extremely
conservative assumption, the deposition of 1.56 mg of aluminum oxide per square meter
equals approximately 0.0054 mg A1/1 at a water depth of 6 inches. The significance of this
deposition is discussed below.

Comparison of Existing and Predicted Conditions: Aluminum

Existing aluminum levels in the surface waters were compared to those levels of

aluminum that serve as limits of protection for aquatic life. These protective concentrations
are referred to as water quality criteria. The EPA has published water quality criteria for
many chemicals designed to protect aquatic life in the nation's fresh waters. The criteria
specify acceptable levels of a given chemical that, if not exceeded, would be protective of
aquatic life. Criteria are established for both short-term (acute) and long-term (chronic)
conditions.

Both the acute and chronic water quality criteria were considered. The acute criteria
would be appropriate immediately after an ASRM test. The chronic criteria can be used to

evaluate cumulative or long-term effects. The acute criteria of 0.75 mg AI/I should not be
exceeded for more than 1 hour within a three-year period. The chronic criterion of
0.087 mg AI/! should not be exceeded for more than 4 days within a three-year period. The
lower chronic value was set to protect two sensitive and important species, rainbow trout
and striped bass. Striped bass may be found in several of the rivers in and around SSC,
including the Pearl River and its tributaries.
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The naturally occurring dissolved aluminum concentrations at SSC (Table 4-6) exceed the

EPA chronic aluminum criterion (0.087 rag/l) for all sampled surface waters except the

Devil's Swamp sample, which was found to be slightly below the chronic criterion level.

However, as stated previously, toxic effects are not readny apparent at this time. The

apparent lack of toxicity of surface waters under present conditions may be due to a number

of reasons including:.

* While the total dissolved aluminum value may exceed the criteria, only a portion

of the dissolved aluminum measured is available to organisms (bioavmlable).

The water quality criteria are established to protect certain sensitive species. While

striped bass are expected to exist in surface waters around SSC, other species native

to the area may be more resistant. Native populations of aquatic organisms include

those organisms that are acclimated to natural conditions associated with southern

surface waters, such as naturally occurring high aluminum levels ahd high

acidity.

The criteria for aluminum are based on waters with pH values in the range of 6.5 to

9.0. The aluminum criteria may not apply to waters with pH values outside these

limits, such as some of the more acidic waters commonly found in the southeastern

states. The EPA recognizes that at pH values below 6.5, specific conditions associated

with the site waters (organic acid content, hardness, and so forth) may be critical

for establishing pH/aluminum toxicity relationships (EPA 1988a).

CONCLUSIONS

Under Case 1 conditions, where rain would not be present, no measurable depositions of

acid, and therefore no change in acidity of surface waters, is expected either in the vicinity

of SSC or elsewhere.

Aluminum depositions were predicted to total less than 0.0060 mgfl in surface waters. The

organic acids present in local surface waters should greatly reduce bioavailability (via

complexation) of the naturally occurring high aluminum levels and any additional inputs

that may result from ASRM testing. Although aluminum concentrations in sampled

surface waters at SSC are relatively high (compared to the national average and the EPA

acute water quality criterion), the bioavaNable portion of the total aluminum present in

these waters appears to be low. Many of the natural waters at SSC obviously support

aquatic life, including the sensitive striped bass species. There is no information currently

available that indicates the natural aquatic environment is stressed. Additional inputs

would be minimal and they are not expected to result in any adverse impacts to aquatic

life.
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4.2.3 Aquatic Life

INTRODUCTION

In Europe, the northeastern United States and southeastern Canada, researchers have

identified acid rain effects on aquatic life, as well as acid-rain induced increases in
aluminum concentrations in lakes and streams. Since the impact to aquatic populations
due to acid rain involves chemicals that are emitted during ASRM testing, concerns have

been voiced regarding the potential for similar impacts to aquatic populations in the

vicinity of SSC. Concerns have also been voiced regarding the potential toxicity of
aluminum chloride.

The FEIS concluded the impacts of._SRM testing on fish would be insignificant because
only small, localized impacts on water quality were predicted. Because of additional air
quality modeling, additional data have been collected and modeled to better characterize
existing and expected water quality conditions (Section 4.2.2). In addition, relevant studies
of the effects of aluminum and acids on aquatic life have been thoroughly reviewed. This
review confirms earlier analysis which predicted insignificant impacts to aquatic
populations.

The following discussion of effects on aquatic life summarizes the ways in which acid and
aluminum can affect aquatic species, current state of knowledge on the subject, and finally,
expected effects of ASRM testing on aquatic species under Case 1 expected conditions.

ADDITIONAL INFORMATION

The potential effects of ASRM exhaust emissions on fish and amphibian health is very
complex, involving interactions between a number of chemicals, primarily hydrogen ions
(acid), calcium, and select forms of aluminum. The interaction of these chemicals as they

affect toxicity has been the subject of considerable research in recent years. The majority of
investigations have been conducted in European and northeastern North American lakes
and streams where problems with acid rain have been identified. In contrast to the surface

waters around SSC, the European and northeastern North American lakes are typically
cold and clear with minimal buffering capacity (that is, minimal ability to chemically
neutralize additions of acid; see Section 4.2.2).

Because the effect of calcium, alkalinity, and some forms of aluminum on the toxicity of
increased acidity levels was unknown until the last several years, early investigators
often fa_ed to measure or report alkalinity, calcium concentrations, and/or aluminum

concentrations in their research. Where aluminum was reported, the exact form of

aluminum was often omitted. As a result, the reported results of these early investigations
were highly variable. Over the past decade, as the role of various metals on toxicity has

become better understood, researchers have made a greater effort to account for the effects of
metals in their studies. Although a great deal of variability continues to be found in study
results, general patterns have emerged which can be used to address the potential effects of
increased acidity and increased aluminum concentrations.
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Research conducted in recent years has concentrated on trout and salmon species because
these species have been identitied as sensitive to increased acidity and because they are the

most common game fish in northern waters. Few studies have been conducted on species
of importance in southern Mississippi. The ability to identify potential impacts on aquatic
species from ASRM testing at SSC is, therefore, limited by the availability of information
regarding the specific warm water s_:ies present in the area. There is, however, sufficient
similarity in the toxicity of acid and aluminum between species to allow extrapolation of
species in the project area where actual srm:ies-specific data are not available.

Summarized below are the most relevant studies concerning the toxic effects of acid and

aluminum on aquatic species. The discussion includes a generalized description of how
acid and aluminum can affect aquatic species, including the effect that calcium has on
modifying toxic effects. This generalized discussion is followed by the results of research
on specific species either found in the ASRM testing region or related to species found in the

area.

Effects of Increased Acidity

Reported effects of low pH on fish have been highly variable. Death due solely to high acid

concentrations, accounting for other factors which may affect mortality, has seldom been
tested. Generally, it is believed that death related to increased acidity in the water is caused

by different mechanisms, depending upon the pH of the water. Below approximately pH
4.0 to 4.5 (depending upon the species of concern), the blood may become acid, affecting

oxygen transfer to the tissues and causing death (Wood 1989).

When the water acidity is in the range of approximately pH 4.0 to 6.0 (variable between
species), it is generally believed that the transfer of electrolytes (chemicals important to the

maintenance of proper moisture and salt balance in the tissues) is affected, which results in

stress and may cause death. At moderately low pH levels which are not inherently lethal,

high feeding rates are needed to compensate for low pH stress; if the feeding rate is not high

enough, reduced growth occurs (Brown and Sadler 1989). Reduction of fish populations

caused by impaired egg development and reduced ability of female fish to release their eggs

has also been observed when moderately acid, nonlethal conditions are present (Bonga and
Balm 1989).

The presence of calcium in the water can act to reduce the effects of acid by blocking the loss

of electrolytes from the tissues and positively affecting other physiological processes (Wood
1989; Potts and McW'flliams 1989; Howells et al. 1983; McDonald et al. 1989). As a result,

fish can generally tolerate greater concentrations of acid when calcium is present in
sufficient quantities. In an analysis of the ratio of calcium to hydrogen ions (acid) in lakes,
Brown and Sadler (1989) found the majority of fishless lakes to have a ratio of calcium to
hydrogen of less than 3 to 1; the majority of lakes with good fisheries tended to have a
ratio greater than 4 to 1.

4-35



Sensitivities of amph_ians to acid exposure have been found to be similar to the

sensitivities of fish. Amph_ians are most suscepb'ble during the egg stage of development.
Of the species observed at SSC, salamanders have been noted to be sensitive to surface water

pH values below 5.0. The eggs of the northern leopard frog, a species closely related to the

southern leopard frog found at SSC, experience 50 percent mortality at pH near 5.0 (Pierce
1985). Long-term exposures of sublethal pH levels have also been shown to inhibit growth
ofamph_ians (Clarkand La Zerte1985;Pierce1990).

Effects of Aluminum at Low pH

The harmful effects of aluminum are highly dependent upon the form of aluminum in
water (Section 4.2.2). The bioavailable forms of aluminum refer to those chemical forms

that can be taken up by aquatic organisms. Only bioavailable forms have the potential to

be harmful to aquatic life. Bioavailable aluminum in concentrations greater than 0.25
mg/l is generally most toxic around pH 5.1 to 5.5, a level at which acidity is not acutely
lethal (Brown and Sadler 1989; Ports and McWiUiams 1989;, Wood 1989; Reader and
Dempsey 1989).

In addition to the toxicity associated with selected forms of aluminum, aluminum

polymers and precipitates are thought to coagulate at or absorb onto the gill surface, which

can cause damage and possibly asphyxiation (Kane and Rabeni 1987; Wood 1980).

Effects of Aluminum Chloride

Results of numerous studies indicate a 50 percent mortality can be expected when aquatic

organisms are exposed to concentrations ranging from approximately 0.20 mg aluminum

chloride/l (approximately 0.050 mg A1/I) for the narrow-mouthed toad to approximately

108.00 mg aluminum chloride/1 (approximately 27.00 mg A1/1) for mosquito fish (EPA
1988a).

Species-Specific ToxiciW Data

A selection of applicable species-specific study results as reported by investigators and

reviewers has been summarized in Table 4-7 as an aid in interpreting any toxic effects
which may occur at pH levels below 6.5 due to the interaction between aluminum,

calcium, and acid concentrations. For most of the studies listed on Table 4-7, the calcium

concentration or alkalinity is unknown, reducing their value in interpreting the potential
effects of increased aluminum and/or acid on fish populations. In addition, only one of the

studies [concerning sticklebacks (Burrows 1977)] identified a range of minimum
concentrations which resulted in effects. Most of the studies reported results of specific
concentrations selected prior to testing rather than testing for threshold conditions. As a

result, little information is available regarding the minimum concentrations at which
effects may occur.
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EXISTING CONDITIONS

Water samples taken at SSC in April 1990 indicate that, generally, pH ranged from 4.6 to

7.1, and aluminum concentrations ranged from 0.1 to 4.6 mg/I (Section 4.2.2, Table 4-6).

The pH values in this limited sample are sim_ar to those observed during several years of

water quality monitoring, indicating that they are representative of the water's current

condition. Within the East Pearl River, Alligator Branch, Lion Branch Devil's Swamp,

the Access Canal to SSC, and other untested drainages (Section 4.2.2, Figures 4-4 and 4-5),

pH levels greater than 6.1 were recorded. These appear to provide satisfactory conditions for

largemouth bass, bluegill, channel catfish, striped bass, and poss_ly other species regardless

of the presence of aluminum or the portion of existing aluminum that may be in

bioavailable forms. The pH of the groundwater supply to the Red Fish Hatchery equals 5.4

(Table 4-6), which obviously allows successful culturing of freshwater fish. Lower pH

levels were found in some of the smaller drainages and swamp-like areas. In these areas, if

all the dissolved aluminum were assumed to be bioavailable (in a form which fish can

uptake into their tissues), literature study results suggest that conditions would not be

conducive to bass, bluegill, fathead minnows, and channel catfish would occur within the

existing range of water conditions. Regardless of the degree of bioavailability of the

aluminum currently present in the region's smaller drainage areas, many of these water

bodies are not expected to support fish because they are too shallow or are intermittent; that

is, they dry up during part of each year. These intermittent water bodies may support

other aquatic organisms, such as invertebrates and amphibians.

A review of the literature indicates that bluegill have the greatest tolerance to elevated

aluminum and acid concentrations of the species tested. Bluegill are the only species

important to sport or commercial fisheries that are reported to exist in the smaller drainages

in the area (Esher and Bradshaw 1988). The tolerance of bluegill to acid and aluminum

may, therefore, be the primary reason why they are the only key species found in

significant quantities in the smaller drainages where lower pH levels were recorded.

Other species common in the vicinity of SSC include crappie, shiners, sunfish, madtom,

paddlefish, and Atlantic sturgeon (Acipenser oxrhynchus). No studies addressing the toxic

effects of aluminum and acid on these species were found. The majority of these species are

found primarily in the larger drainages, suggesting a dependence on either the existence of

deeper water, or flowing water, or higher pH levels.

CONCLUSIONS

Under normal operating conditions without rain, ASRM testing is expected to have no

effect on pH and minor effects on aluminum concentrations on SSC surface waters (Section

4.2.2). The trace amounts of aluminum (less than 0.0060 mg/l increase) are insignificant

relative to the levels naturally present in the region's drainages and relative to the

minimum level of aluminum required to produce toxic effects. These concentrations

would have no impacts on fish populations.
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The predicted deposition of aluminum chloride associated with ASRM testing corresponds

to an aluminum chloride concentration in shallow surface waters (6 inches or less) of less

than 0.000005 mg/l (approximately 0.000001 mg Al/1). That is, the deposition of

aluminum chloride is expected to be approximately 40,000 times less than the minimum

concentration causing 50 percent mortality in laboratory tests with toads. Because the

concentration of aluminum chloride is so far below the level that would harm aquatic

species, no adverse effects on aquatic life are expected due to aluminum chloride exposure.

Even greater-than-predicted acid deposition in areas such as the access canal, Catahoula

Creek, the main channels of the Pearl River, or Alligator Branch would have no effect on

aquatic life because these areas have sufficient volume and/or flow to accept acid increases

without changing the natural acidic balance of the water. Greater-than-predicted

deposition of aluminum compounds would have no effect because increases in aluminum

concentrations 100 times as great as predicted would continue to be unsubstantial relative to

existing aluminum concentrations. In conclusion, no impacts are predicted on aquatic

populations under expected Case 1 operating conditions.

4.2.4 Plants and Soils

INTRODUCTION

As concluded in the FEIS, static testing impacts on vegetation and soils in and adjacent to

the ASRM test site at SSC are expected to be below threshold levels that would cause harm

to plants or decrease soil fertility. Additional information is presented here to describe the

natural processes and project-related practices that will prevent adverse impacts. This

supplemental analysis substantiates initial conclusions in the FEIS that ASRM test

emissions under expected conditions will not adversely impact vegetation and soil

fertility.

SUMMARY OF THE FEIS

As noted in the FEIS and in Section 3 of this SFEIS, a vegetation analysis was completed at

SSC by Esher and Bradshaw in 1988. They identified four major plant community types

on the proposed ASRM site: 1) pine forest; 2) bottomland hardwood forest; 3) pitcher plant

bogs; and 4) grasslands (Esher and Bradshaw 1988). Vegetation in the buffer area and

region around SSC is primarily pine forest and bottomland hardwood forest. Pitcher plant

bogs, bottomland hardwood forests, and much of the pine forest can be classified as
wetland.

Vegetation resources can be affected by direct deposition of emission substances on plant

surfaces (short-term or acute effects), or by deposition of emissions on soils and surface

waters that causes changes in soil and/or water chemistry affecting plant growth and

survival over time (long-term or chronic effects). The FEIS discussed potential impacts to

vegetation for the major emission products, aluminum oxide and HCI gas. Based on a

review of studies that investigated the effects of aluminum oxide exposures to plants, the

FEIS concluded that impacts to vegetation from aluminum oxide air concentration or
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deposition would be insignificant. No studies reviewed during preparation of the FEIS had

demonstrated any visible effects on plants from high doses of aluminum oxide (Lerman

et al. n.d.; NASA 1977; NASA 1980).

As noted in the FEIS, the lkelihood, type and extent of injury to plants from HCI gas are

dependent upon plant species, HCI concentration, and exposure time. A number of studies
have documented the reaction of plants to HCI exposure (Lerman et al. n.d.). The FEIS
concluded that if HC1 were rained out at the point of greatest concentration, the effect on

plants would be minor because this concentration and duration of exposure are below doses
of HC1 that cause observable injury to plant foliage. Leaf discoloration and spotting could
occur only during atmospheric conditions of calm wind and rain, conditions under which
NASA does not plan to test.

ADDITIONAL INFORMATION

Additional information documenting the relative toxicities of HCI, aluminum oxide, and
other emission products was obtained to further evaluate the potential for environmental

impacts described in the FEIS. This information and impact assessment focuses on
potential acute and chronic effects of the emissions. Specifically, this section addresses the
following plant-related concerns: 1) potential acute and chronic effects of aluminum oxide

deposition on plant parts; 2) potential acute effects of HCI air concentrations on plants;

3) potential acute effects of HC1 deposition on plants; and 4) potential chronic effects on
plants from HCf deposition on soils.

Aluminum Oxide Deposition on Plant Parts

As noted in Section 4.2.1, aluminum oxide is not toxic, but can be characterized as a

particulate emission. Particulate emissions are not generally considered harmful unless
they are highly caustic or if very heavy deposits occur (Jacobson and Hill 1970).
Aluminum oxide is not caustic, nor will ASRM testing produce heavy deposits of
aluminum oxide. Instead, the maximum deposition of aluminum oxide will be small

(1.56 mg/m 2, Table 4.4).

Because aluminum oxide is an inert substance, effects could occur only if aluminum oxide

deposits were large enough to coat leaf surfaces, thereby blocking light available for
photosynthesis and plugging the leaf pores used for gas exchange in plant respiration.
Again, the projected maximum rate of aluminum oxide deposition (about 1.56 mg/m 2, see

Table 4-4) will not approach the quantities required to coat leaf surfaces and produce such
chronic effects.
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Potential Acute Effects of HC! Air Concentration on Plants

As stated above, the likelihood and extent of injury to plants from exposure to HCI gas

depends on plant species, HCf concentration and exposure time. In high concentrations,

HCI gas can be toxic to plants in both gaseous and aqueous forms. No chronic effects have

been reported for HCI gas 0acobson and Hill 1970), although extremely high gaseous HCl

concentrations have been shown to cause acute plant injury. Endress and others (1978)

exposed pinto bean leaves for 20 minutes to different concentrations of HCI gas, and noted

dead spots only on leaves treated with HC1 concentrations higher than 17.9 mg/m 3.

Concentrations in excess of 25.0 mg/m 3 were required to induce dead spots on more than

10 percent of the leaves.

Under Case I conditions,the maximum ground-levelairconcentrationof HCI resulting

from ASRM testingispredictedtobe 0.24mg/m 3,0.6mile (1km) from the teststand

(Table4-3).This indicatesthatHCI concentrationsproduced during ASRM testingunder

Case 1 conditionsatSSC willbe some 75 times lessthan thresholdlevelsatwhich plant

leavesmight begin to show damage. PredictedHCI gas concentrationsin the airwill

thereforenot cause any acuteeffectstoplants.Under expected conditions(Case 1)there will

be no measurable HCI depositionand thereforeno depositionimpacts on plants.

Potential Chronic Effects on Plants from HC! Deposition in Soils.

Existing Soil Conditions. The soils in the SSC area are predominantly hydric or

wetland soils (USDA 1981). These soils are characterized by low pH and high levels of

organic matter within the top 6 inches of soil. Soils contain substantial amounts of organic

acids, as evidenced by the brown color of many surface water bodies in and around SSC.

Organic matter plays a key role in buffering soils from changes in pH, and organic acids

have a major role in immobilizing soluble aluminum compounds produced by low pH
(Hue et al. 1986).

NASA is developing a comprehensive program for monitoring soil conditions. While the

environmental monitoring plan is being developed, some monitoring has been initiated to

characterize the existing soil condition. In the summer of 1989, soil samples were taken

from six locations on the SSC fee area. At each location, three independent (replicate)

samples were obtained from each of the four soil layers (horizons) which were present.

These samples, in combination with a larger number of samples to be taken over the next

three years, will be used to characterize the soil materials before any ASRM testing is

conducted and will provide a baseline for later comparison with post-test conditions. To

predict ASRM effects on sons, tests were performed on the 1989 soil samples to characterize

percent of organic matter, pH, cation exchange capacity (CEC), available (exchangeable)

aluminum, and layer thickness.

A preliminary summary of the 1989 test results (NASA 1990b) indicates that the surface

layer (variable depth leaf litter or organic horizon) has high organic matter content (50

percen0, high cation exchange capacity (an expression of a soil's buffering capacity and

other conditions) (23 meq/100g), low pH (3.5 at upper soil layers), and moderately high
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exchangeable aluminum content (372 ppm). Twenty-five percent of the sampled soil's
available cation exchange capacity is used by the existing aluminum (25 percent

aluminum saturation). Cation exchange capacity refers to the ability to resist changes in

acidity; the higher the cation exchange capacity, the greater the abMty to buffer changes in
acidity.

Other sampled layers below the surface layer showed less organic matter (8 percent in the

A horizon, the first mineral soil layer below the organic layer, with an accumulation of

clays down to 0.5 percent in the B2 horizon, the next lower layer), moderate cation
exchange capacity (about 7 meq/100g), less acid (pH 4.1 to 4.6), and less aluminum (about
220 ppm). The aluminum saturation is about 40 percent.

Potential Soil Effects from HCI Deposition. The extent and likelihood of impacts to
soils from HCI deposition can be explained by three mechanisms: 1) increased acidity
(decreased pH) could result in an increase in aluminum solubility; 2) interaction of HCI and

aluminum oxide could produce bioavailable aluminum compounds; and 3) soil fertility

could decrease (by replacement of nutrient minerals important for plant growth with

hydrogen ions).

° Increases in Acidity and Aluminum Solubility. Deposition of HCI onto soils and the

likelihood of lowering soil pH (increased acidity) depends on initial soil pH,

quantity of HCI deposited, soil type, predominant clay mineral, soil and vegetation
buffering abilities, rates of organic acid release to soil from decomposition processes,

and the size of the watershed drainage area. Soils have the ability to buffer changes

in acidity, depending on the amount of organic matter present and the predominant

type of clay mineral in the soil.

Increased soil acidity may also increase the solubility of aluminum, which can be
harmful to some plants if it occurs in high enough concentrations (Cronan and
Schofield 1979). Exchangeable aluminum generally becomes more soluble as the pH

decreases below 4.0 or increases above 8.0, and gradually increases to toxic levels for

some plants at pH values less than 5.0 in most soils. Symptoms of aluminum

toxicity may include stunting, discoloration (purpling), appearance of small and

excessively dark green leaves, leaf curl, and stubby/brittle roots (for more discussion
on aluminum chemistry, see Section 4.2.2).

Bioavailable aluminum is immobilized (or bound) by organic acids present in the

soils, by their binding with these acids to form insoluble or nonbioavailable
molecules (Foy 1971). As bioavailable aluminum increases with a lowering of the
pH, aluminum species not tied up in an organic molecule complex ultimately
migrate to water bodies. Thus, organic matter present in the soil provides a binding

capacity for changes in soluble aluminum. In general, the higher the amount of
organic matter, the higher the soil's binding capacity. As noted above, the soil
samples recently taken at SSC indicate a high binding capacity in the surface layer
due to high organic matter (NASA 1990b).
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. To:dc Alumium Forms ia Soils. The formation of bioavailable aluminum

compounds, generally regarded as potentially toxic forms of aluminum in aqueous

systems, depends on the reaction of HC1 from the exhaust plume or other existing

mineral acids such as nitric and sulfuric acid with soil aluminum (Fageria et al.

1988). While small amounts of chlorinated aluminum compounds will be present
in the ASRM exhaust, essentially all will be immobilized by the natural buffering
capacity in the soil (Adams 1990).

3. Decreases is Soil Fertility. Soils receiving acid deposition and increasing amounts of
soluble aluminum may undergo a loss of fertility as the hydrogen and aluminum

ions replace (exchange) ions of nitrogen, calcium, potassium, and magnesium, all

important nutrients for plant growth. A soil's ability to buffer changes in fertility
is determined by the type of clay predominating in the soil and by the amount of
organic matter.

Plant-Soil Interactions Related to ASRM Testing. To further clarify the effects on
plants of changes in soils caused by deposition of aluminum oxide and acid, a review of the
literature was conducted and then discussed with Dr. James Adams, an expert in soil

chemistry who is knowledgeable about aluminum and acidic conditions in Mississippi
soils.

Dr. Adams, a professor at Auburn University, stated that the organic acids in the local soils

will combine (complex) with soluble forms of aluminum which may be deposited or

produced and will immobilize the aluminum (Adams 1990). This is especially true in

forested areas where leaf debris accumulation leads to production of organic acids: and it is

also true in grassy areas (pasture). Bioavailable aluminum forms are immobilized by

organic acids present in organic layers of the soil (Foy 1971). In agricultural soils low in

organic matter, such as row crops, farmers typically lime their fields to reduce soil acidity

that is naturally occurring or induced by commercial fertilizers, thereby avoiding any
problems with aluminum toxicity.

On the basis of air quality modeling results discussed in Section 4.2.1, maximum

deposition rates of aluminum oxide are projected to be approximately 1.56 mg/m z at a
distance of 4_. miles under the normal conditions of no rain (Case 1). The maximum

predicted value of 1.56 mg/m z deposition of aluminum oxide for each test is equivalent to
0.0078 pound of aluminum per acre (aluminum oxide is about half aluminum). On the
basis of the average of the organic horizon samples taken in 1989, the total amount of

exchangeable aluminum in the top 6 inches of soil is currently close to 900 Ib/acre.
Aluminum oxide and aluminum chloride (about 0.00023 mg/m z, Table 4-4) depositions are
expected to be too small to alter the natural chemical balance of local soils.

CONCLUSIONS

The FEIS concluded that no adverse impacts would occur to vegetation from ASRM testing
under expected conditions. This supplemental analysis, based on additional modeling,
supports these conclusions. Air concentrations and deposition rates of HCI, aluminum
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oxide and aluminum chloride are below the threshold levels at which research has shown

are harmful to plants. Aluminum oxide is nontoxic even in high doses.

The incremental quantity of aluminum added to the soil from ASRM testing is small

enough in comparison to the natural amounts of aluminum already found in the soil that

it can easily be assimilated without changing the chemical properties of the soil. In

addition, organic acids in the soil will combine (complex) with most if not all toxic forms

of aluminum which may form and immobilize them, similar to natural conditions.

4.2.5 Groundwater

INTRODUCTION

The SFEIS addresses two groundwater issues: 1) the impact of ASRM testing on

groundwater quality and 2) the potential for damage to water wells from vibrations

generated during testing. The FEIS concluded that the potential for impacts to shallow

groundwater by introduction of hydrogen chloride and aluminum oxide would be

rendered insignificant by controlling surface water runoff from the firing pads, thereby

eliminating infiltration. The FEIS also addressed ground shaking (under the topic of noise;

FEIS Appendix F) and concluded that impacts would be negligible based on previous

NASA testing experience. Additional review of potential impacts on groundwater quality

is summarized below. Further literature review has also been conducted to analyze

potential effects of ground shaking. Evaluations conducted for the SFEIS affirm that

expected impacts of proposed ASRM testing will not cause any adverse impacts to

groundwater quality or wells.

This section also discusses groundwater and well impacts, ground vibrations, and related

effects to wells and aquifers, and presents conclusions.

GROUNDWATER AND WELLS

In order for ASRM testing to contaminate groundwater tapped by wells, three conditions

would have to be met. First, ASRM testing would have to produce increased total acidity,

destroying the natural "litter layer," or produce an aluminum form that would

contaminate soil and/or surface water (Condition 1). Then, the contamination would

have to migrate to and persist in the shallow, unconfined aquifer (Condition 2). Finally,

water from this aquifer would have to move downward and mix with water in the

deeper, confined aquifers (Condition 3). None of these necessary conditions will be met in

ASRM testing, indicating that contamination of groundwater or groundwater wells is not

projected.

Condition I is addressed in the sections on surface water and soils (Sections 4.2.2 and 4.2.4,

respectively). Those discussions conclude that contamination of surface water and soil

will not occur from ASRM testing. Thus, Condition 1 will not be met.
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Condition 2 requires that potential contaminants migrate to and persist in shallow

groundwater. Factors that protect groundwater quality are the buffering (neutralizing) and

_filterin_ capability of the soil through which recharging (inflowing) groundwater must

pass, and the buffering capability and dilution capacity of existing groundwater with

which recharging groundwater mixes (see below). With ASRM testing, the potential

impacts to surface water and soil are increased acidity and increased aluminum

concentrations. Because the groundwater is soft and possesses sufficient alkalinity

(Newcome 1967) to buffer any increased acidity, the influx of hydrogen ions from any

surface water carried to the groundwater will be neutralized. In addition, alkalinity of the

soil below the water table would also buffer any increased acidity, thereby providing

further stabilization of groundwater pH. In the case of aluminum, neutralizing the

influence of low pH values through buffering would result in precipitation (separation of a

chemical from the solution) of some or most additional aluminum. Soil can also filter

dissolved aluminum through cation exchange and by combining (complexing) with

organic acids (see Section 4.2.4). Because of dilution, precipitation, and adsorption to soil, no

detectable increase in groundwater concentrations of aluminum is expected from ASRM
testing. Thus, Condition 2 will not be met.

Condition 3 requires that potential contaminants migrate to water resources tapped by

wells in the region. However, even if the ASRM testing were to adversely affect the

shallow, unconfined aquifer, all deeper aquifers that supply water to drinking water wells

would be protected due to the occurrence of two naturally occurring factors: the clay

aquitards present between aquifers and the upward vertical component of the hydraulic

gradient (the direction of the groundwater flow driving force). Sedimentary beds that

underlie SSC consist of sand layers 25 to 150 feet thick that act as aquifers (sediments that

permit easy water flow) separated by equally thick silt and clay layers that act as aquitards

(sediments that restrict water flow). The aquitards separate the aquifers, which lie

underground in alternating layers, resulting in very minimal flow between the distinct

aquifers. Thus, water in the subsurface flows easily in horizontal directions, but has great

difficulty flowing up or down through the clay layers.

The separation of aquifers created by the clay aquitards also allows maintenance of a

difference in pressure between aquifers (termed "confined aquifers"). Increasing aquifer

depths correlate with greater artesian pressure and higher hydrostatic heads (the elevation

to which the water level in a well will come to res0. The vertical component of

groundwater flow is therefore upward because the hydrostatic head increases with the

depth of individual aquifers (Newcome 1967). This potential upward flow is blocked,

however, by the aquitards. Because of the intervening clay aquitards and upward

hydraulic gradient, water from the shallow, unconfined aquifer would not move

downward to mix with the deeper, confined aquifer, and Condition 3 would not be met.

To determine which water resources require absolute protection, groundwater use for the

SSC area was also examined. Water used in the region is delivered from numerous

groundwater wells for agriculture or private and municipal water supplies, all of which

are reported to tap water from deep below the surface (Newcome 1967; Colson and Boswell

1985). SSC has seven potable (drinking) water wells (completed to depths of 602, 652, 676,
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688, 1,481, and 1,530 feet) and three industrial water wells (completed to depths of 672,

1,695, and 1,873 fee0. No operational wells are present within at least 2,700 feet of the

proposed ASRM test stand.

Potable water extends to a depth of approximately 3,000 feet on the west side of the SSC

buffer zone and to approximately 2,000 feet on the east side (Newcome 1967). Numerous

wells in the area tap the various aquifers at typical depths of 400 to 1,000 feet (Colson and

Boswell 1985). Most of the deeper aquifers have artesian pressures sufficient to produce free-

flowing wells at the surface (Newcome 1967; Colson and Boswell 1985). No wells at SSC

tap the shallow, unconfined aquifer, nor is this aquifer used in the region (Newcome 1967;

Colson and Boswell 1985). However, some private, shallow wells may exist, between SSC

and the Gulf to the southwest, and these wells may withdraw water from the unconfined

aquifer.

Recharge (or the source of water) to the deep, confined aquifers used for water wells (400 to

1,800 feet deep at SSC) occurs tens of miles to the north-northeast where the gradually

dipping (sloping) geologic units are near the ground surface. The shallow, unconfined

aquifer in and around SSC at the depth of the water table is recharged from local sources

(rainfall, rivers, lakes). Water at or near the surface in the SSC area does not move down to

the depths tapped by deep wells due to the upward hydraulic gradient and the barriers

formed by the clay aquitards.

In summary, ASRM testing would not result in any adverse impacts to groundwater

quality or groundwater wells. None of the three conditions necessary to cause degradation

of groundwater or groundwater wells would be applicable to ASRM testing. There would

be no soil and/or surface water contamination; no migration of harmful substances to the

shallow, unconfined aquifer; and no mixing of water from the unconfined aquifer with

water in the deeper, confined aquifers. The wells that tap the confined aquifers would be

protected by the absence of all three conditions, wh_e any wells tapping the shallower

aquifers would still be protected by failure to satisfy Conditions I and 2.

GROUND VIBRATION AND WELLS

Some ground vibration would be generated by ASRM testing at the test site. Because of the

very small magnitude of ground vibration (hundredths to thousandths of an inch) that

would be generated, ground motion from ASRM testing would have no effect on water

wells in the area.

Test firing of the ASRM would generate some ground vibrations at the site transmitted

through the test stand and through very minor vibrations transferred from the loud, low-

pitched noise to the ground. The ground vibrations generated from the test are expected to

be of small magnitude, based on measurements conducted during previous Saturn rocket

tests at the site for the Apollo program and modeling of ASRM-generated ground vibrations

(Ransford 1990). In the case of the Saturn tests, wells adjacent to the test stand were

undisturbed. Each Saturn-lC stage generated approximately 7.5 million pounds of thrust,

while ASRM testing would generate only 3.5 million pounds of thrust. Because the
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ASRM test would produce a thrust that is less than half of the Saturn, the resulting ground

vibrations from ASRM testing would be of smaller magnitude and would attenuate

(lessen) over a shorter distance. Because of rapid attenuation of ground vibrations in the

soft, saturated, native soils, the preliminary analysis predicts a worst-case wave amplitude

(the distance that ground w_l move back and forth) of I mm at 1 kilometer (0.04 inches at

0.6 miles) from the test stand (Ransford 1990).

For purposes of comparison, studies were reviewed from seismic shothole blasts

(underground dynamite explosions) for geophysical prospecting (Bond 1975) and quarry

blasts (explosions for breaking or loosening rocks; Robertson et al. 1980, Robertson 1988).

The blasts result in shock waves (mostly P-waves) that are the equivalent of small

earthquakes (magnitudes of M - 2 to M - 3 on the Richter scale), but the studies show that

these ground-vibration events do not affect nearby water wells. Preliminary analysis of

ASRM testing indicates that ground v_rations would be less than or equivalent to

vibrations generated during geophysical surveys and quarry blasts. This magnitude of

ground vibration would not be felt outside the buffer zone.

The rare conditions under which groundwater wells may be damaged involve severe

ground vibration and ground movement during a large magnitude earthquake (for

example, a magnitude of M - 6 or above on the Richter scale) in areas of active earthquake

faulting (such as along the San Andreas fault in California). Underground components of

wells rarely are damaged by severe vibration alone, but damage may occur in areas near

active faults that undergo significant shifting of the ground because of fault movement

(Egnchi et al. 1981). Severe changes in hydraulic head (water levels) or in permeability of

aquifers occasionally occurs in areas of active fault movement where bedrock undergoes

strain or deformation by means of compression, expansion, or sheafing (Wood et al. 1985).

Ground vibration from ASRM testing, therefore, is not projected to affect groundwater

wells in the area because the magnitude of vibration will be extremely small and will

dissipate over a short distance (probably within several hundred meters). This conclusion

is supported further by the fact that previous test-stand firing of the Saturn rocket stages

showed no effect on water wells, even those in the immediate test area. ASRM testing is

not analogous to large-magnitude seismic events along earthquake faults.

CONCLUSIONS

ASP,aM testing will not impact groundwater quality or groundwater wells. Groundwater

quality in the area should not be affected by ASRM testing due to buffering and natural

treatment by native soil, buffering by alkalinity of the groundwater, and prevention of

downward groundwater flow by the occurrence of an upward gradient and effective

barriers formed by horizontal clay aquitards between aquifers. Even if deposited

aluminum and low-pH water were to reach the uppermost, shallow aquifer, the aquifer

would be protected by natural buffering and treatment capabilities of soil and groundwater,

along with dilution by means of mixing with large groundwater volumes.
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Ground motion generated by the testing would be of very small magnitude and would be

reduced to negligible levels within several hundred meters of the test stand. Thus, the

water quality and structural soundness of local drinking water wells would not be

adversely affected by ASRM testing. This supports the findings of the FEIS and is based on

more detailed analysis of the two areas of potential concern.

4.2.6 Wildlife and Domestic Animals

INTRODUCTION

The FEIS concluded that the effects of ASRM testing on wildlife would be minor. This

conclusion was based on two primary factors. First, few, if any, animals would be killed

by the force of the rocket exhaust. The safety zone around the test stand will be cleared of

vegetation and therefore devoid of wildlife habitat, and human pretest activities will

likely disperse any animals from the test stand area. Second, the concentration and

duration of exposures of aluminum oxide and HCI are far below doses that cause

measurable injury to animals. Additional air quality modeling, discussed in Section 4.2.1,

has resulted in lower predicted air concentrations of aluminum oxide and HC1 than those

originally evaluated in the FEIS. The additional air quality analysis, coupled with water

quality, soils and plant impact analyses presented in this SFEIS, support initial conclusions

regarding impacts to wildlife from ASRM testing under expected conditions. The

information supporting this conclusion is presented below.

There are several mechanisms through which air pollution from any source can affect

animals: 1) animals can ingest, inhale, or be directly exposed to emissions in the air,

2) animals can ingest other organisms (plants, animals, or insects) that have accumulated

substances from the air, water, or soil; and 3) animal habitat can be lost as a result of plant

injury. For the ASRM project, the analysis is focused on the first mechanism. Since there
is no known evidence of either HC1 or aluminum oxide bioaccumulation in animals,

impacts via the second mechanism (ingesting other animals or insects) are not expected.

Similarly, adverse impacts to plants and soils have not been predicted (Section 4.2.4) so that

ingestion of injured plants (the second mechanism) or loss of habitat from plant injury

(the third mechanism) are not predicted under Case I conditions.

HCL AND ALUMINUM EFFECTS ON ANIMALS

Effects of HC! Inhalation

Land-based wildlife at SSC includes wild turkey, gray and fox squirrels, gray fox, raccoon,

striped skunk, beaver, nutria, rabbits, quail, and deer. A complete list of animal species

identified in the SSC area has been compiled by Esher and Bradshaw (1988) and was

included in the FEIS. Of these animals, only rabbits have been used for laboratory tests

involving HCI. Rabbits were found to have damage to their lungs when exposed to 49

mg/m 3 of HCI gas for 10 minutes (NASA 1977). In another study, guinea pigs were found

to have no lung damage from exposure to 15 mg/m 3 of HC1 gas for 2 hours per day, 5
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days/week, after 18 days (EPA 1986). Guinea pigs exposed to hydrogen chloride at 0.15
mg/m 3 for 2 hours/day, 5 days/week for 4 weeks did not show any effects (Kirsch and
Drabke 1982).

From these studies, a threshold air concentration for injury to smail animals breathing
HC1 could be estimated between 15 mg/m3 and 49 mg/m 3. The air quaiity modeling

results shown in Table 63 indicate the maximum predicted HC1 concentration is 0.24
mg/m3, or approximately 100 times below this injury threshold range for HCL Therefore,

no adverse effects on animals are expected due to HCI inhalation.

Effects of Aluminum Oxide Inhalation and Deposition

In similar laboratory studies using aluminum oxide dust, rats and mice experienced eye
and nose irritations at a concentration of 478 mg/m 3 for 60 minutes (EPA 1987a). Air
quality modeling results (Table 4-3) predict a maximum instantaneous concentration of
aluminum oxide of about 0.4 mg/m 3, or over a thousand times less than the irritation
concentrations reported for rats and mice. Deposition of aluminum oxide onto the skin,
fur, or feathers of animals will not cause injury because it is inert and will not be absorbed
through the skin.

Effects of Aluminum Chloride

As shown in Table 4-3, deposition of aluminum chloride is predicted to be very low.

While few studies have been conducted relating to the effects of dry aluminum chloride on
terrestrial animals, many studies have been conducted using aqueous exposure of
aluminum chloride on aquatic organisms. Aquatic organisms such as fish and

amph_ians (Section 4.2.3) are generally more sensitive to toxins than terrestrial animals.

In summary, the deposition of aluminum chloride is expected to be approximately 40,000
times less than the minimum concentration causing 50 percent mortality in laboratory
tests with toads. Because the concentration of aluminum chloride is so far below the level

that would harm aquatic species, and because aquatic species are more sensitive than
terrestrial species, no adverse effects on wildlife or domestic animals are expected due to

aluminum chloride exposure.

Effects of Increased Acidity and Acid Rain

Of all groups of animals, amphibians and invertebrates are the most sensitive to direct
exposure to increased acidity. Amphibians are discussed in Section 4.2.3, Aquatic Life. For
other nonaquatic animals less sensitive than amphibians, such as wild mammals, birds,

or livestock, there are no documented cases of exposure to acid rain which produced any

significant injury (Haramis 1990). Only with extremely high laboratory doses of HCI
(73,440 rag/i) has any injury to animals been documented (Vermot et al. 1977), and which
are not found under Case 1 conditions.
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CONCLUSIONS

Under expected conditions without rain, ASRM testing is expected to have no impacts on

wildlife or domestic animals. Air concentrations of HC1 produced by the ASRM are

predicted to be 100 to 200 times below the injury threshold observed for small animals.

Aluminum oxide predicted concentrations are 1,000 times less than irritation levels for

small animals (rats or mice). Aluminum oxide deposited directly onto the skin, fur, or

feathers of animals is not expected to cause injury since the deposition rate is well below

the irritation level and because aluminum oxide is inert and will not be absorbed through

the skin. Aluminum chloride depositions are 40,000 times less than those reported to cause

injury to toads. Thus, no adverse impacts on wildlife or domestic animals is projected.

4.3 IMPACTS UNDER CASE 2 CONDITIONS

Under the Case 2 unexpected conditions, a significant rainfall event is presumed to occur

one hour after the test firing. This case therefore depends on some failure of the weather

forecasting system, so that the rain occurs unexpectedly.

4.3.1 Air Quality

INTRODUCTION

By using the dispersion results described in Section 4.1.2 in air quality impacts from

ASRM testing were evaluated for the unexpected Case 2 conditions. The following sections

discuss the modeling results and predicted impacts under Case 2 conditions. Discussions of

chemical, physical, and biological principles were presented under Case 1.

Hydrogen Chloride

The ground-level HC1 air concentrations predicted under Case I will also exist in Case 2

until rain begins. The ground-level HCI concentrations would be as described in Section

4.2.1 from the time of the test until one hour after the test.

The Case 2 scenario assumes that all of the HCf in the exhaust plume is incorporated into a

rain cloud and rained out. The process by which the HCI becomes dissolved in the

rainwater requires that the HCI first be dissolved in the tiny droplets of the cloud (]ensen

1984; Pruppacher 1980). Since the relative humidity in a buoyantly rising exhaust plume

at cloud level will be very near 100 percent due to the additional water vapor produced

during fuel combustion, the HC1 will be dissolved in aqueous aerosols. During a rain

event, the HC1 aerosols would enter the rain cloud, allowing the formation of cloud

droplets 1/on the aerosols. (Although many of the HCI aerosols may be too small to form

cloud droplets initially, the Case 2 scenario conservatively assumes that all the HCI

1/ Cloud droplets are the tiny (5-10 Ixm diameter) droplets of water that make up a cloud. See
Glossary.
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aerosols will form cloud droplets.) The cloud droplets will then coalesce with each other

until they have formed drops that are large enough to fall to the ground (i.e., raindrops).

Each raindrop typically consists of about a mnlion cloud droplets (Wallace and Hobbs

1977).

For the Case 2 scenario, all the HCf is assumed to rain out in 3/4-inch (2 centimeters) of rain

over the area of the rain cloud (a typical medium-sized rain cloud area of 36 square miles

was used for these calculations). A 3/4-inch rain was selected for analysis because smaller

amounts of rain would rain out only a portion of the total HC1 in the plume. 1/

When the HCI is added to the rainwater, it adds acidity 2/already present in the rain. The

background rain acidity for Case 2 was calculated using the most recent five-year average

background acidity, pH 4.5, 3/for southern Mississippi (USGS 1989). The background

rainwater data from SSC show a range of weekly averaged rainwater pH values of 3.7 to

6.2. Since the measured rainwater pH values are weekly averages, single event background

rain events may have pH values below 3.7. In general, rainwater in southern Mississippi

is already quite acidic.

INPUFF 2.3 modeling of the exhaust plume indicated that the concentration of HCI in the

rain will decrease as the plume disperses with time. If rain occurs one hour after the test.

therefore, the acidity in the rain win be lower (slightly higher pH) than if it rains

immediately after the test Gable 4-8) (see A0pendix D).

The acid rain predictions based on the INPUFF 2.3 modeling are valid only for a short time

(i.e., up to 2 hours after the tes0, because the meteorological conditions assumed in the

modeling (unidirectional, steady, and low wind speeds) could not persist due to the

changing wind and turbulence conditions associated with the warm, coastal environment

at SSC (Hsu 1988). The wind and turbulence conditions at a coastal site such as SSC will

change throughout the day. A typical time for these atmospheric changes is about 4 hours

(Stull 1988). The changing wind directions and wind speeds, vertically and laterally,

would increase the dispersion of the plume such that the HCI air concentrations would be

extremely low. A rain event occurring three, four, or more hours after a test would show

no increase in acidity due to HCI.

1/

2/

3/

Since the acidity depends on the l_rcentsge of HCf dissolved in the rain and this percentage
may vary considerably depending upon the nature of the cloud, the acidity of the raindrops
from a minor rain event incorporating an HCf exhaust plume is impossible to determine.
Measurements from a minor rain during a Titan Ill launch at KSC showed a wide range of
rain pH values within a six-mile radius of the launch site (Pellett et al. 1983).

Background rainwater acidity is the result of natural sources of acidity plus existing man-
made sources.

pH is a measure of the acidity or alkalinity of an aqueous solution (such as rain), pH values
below 7 are considered acid and pH values above 7 are considered alkaline. The relevance of pH
values was discussed in Section 4.2.2, Surface Water.
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Table 4-8. Case 2: Predicted Rainwater Acidity

Distance
From Elapsed Total Concentrationof

TestStand Time Rainfall HCIinRainwater pHof
(miles) (min)a/ (inches) (m/I) Rainwaterb/

0 0 0.75 56 2.8

4.5 60 0.75 46 2.9

9 120 0.75 39 3.0

a/ Distance and time are related to windspeed. At the modeled ground-level windspeed of 4.5

miles/hour, the plume would be over an area extending from about 3 to 7 miles from the test

stand after 60 minutes, and would be over an area 8 to 12 miles from the test stand after 120

minutes.

b/ For sample calculations of rainwater acidity, see Appendix D.

Aluminum Oxide

Laboratory studies of the reactions between aluminum oxide and HCI suggest that the

aluminum oxide particles in the solid rocket motor exhaust will acquire a soluble chloride

coating (Corer and Pellet 1978; Cofer 1978). The soluble chloride coating may allow the

particles to act as cloud droplet condensation nuclei t/and therefore allow the aluminum

oxide particles to be removed by rain. Filter samples of solid rocket motor exhaust from

Space Shuttle launches collected from an airplane a few minutes after the launch at an

altitude of about 0.7 mile revealed almost no surface chloride coatings on the aluminum

oxide particles (Corer et al. 1987). However, in a later study, exhaust plume samples of a

Space Shuttle launch collected at altitudes between 2.9 and 4.7 miles contained 0.6-1.0

percent chloriding by weight (Corer et al. 1989). Although some chloriding may occur on

the aluminum oxide particles, studies have shown that the concentration of ice nuclei 2/in

the Space Shuttle plume remains similar to the natural background concentrations at KSC,

indicating that the aluminum oxide particles (either coated with chlorides or not coated) do

not form ice nuclei (Cofer et al. 1987).

1/

2/

Cloud condensation nuclei are aerosol particles that allow enough water vapor to deposit on
them to form a cloud droplet.

Ice nuclei are aerosol particles that allow water vapor to freeze upon deposition to form crystals of
ice. Ice nuclei are important in initiating rain from clouds (see Appendix E.).
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Because of the small amount of soluble coatings on the aluminum oxide particles in the

actual Space Shuttle exhaust samples and the lack of elevated levels of ice nuclei, it is clear

that the aluminum oxide particles present in the exhaust do not readily form cloud

droplets. This means that any aluminum oxide particles in ASRM exhaust would not be

rained out in the time it takes the ASRM plume to completely dissipate. As in Case 1, most

of the aluminum oxide in the ASRM exhaust will remain suspended in the air, and about

1.07 to 1.56 mg/m 2 will be deposited on the ground downwind of the test stand by dry

deposition (Table 4-4). As the plume dissipates, all the particles produced in the exhaust

plume will eventually be deposited in minute quantities spread out over a vast distance.

The average time particles of this size remain suspended in the atmosphere is about two

weeks (Pruppacher 1980). No negative impact or measurable increased contribution will

exist niter this period of time.

Aluminum Chlorides

If the HC1 enters a cloud, much of it will dissolve into droplets of water. For those droplets

that may have captured an aluminum oxide particle, aluminum chloride may be formed

by Reaction 4-1. AS discussed under Case 1, however, this reaction is not

thermodynamically favored and is unlikely to occur. Therefore, no new aluminum

chloride is expected to form in clouds or rain as a result of reactions between 8C1, water,

and aluminum oxide.

Some aluminum chloride is expected to form during the combustion process. If the plume

enters a cloud, this aluminum chloride will readily dissolve in the droplets of water or

will act as cloud condensation nuclei. Once dissolved in water, the aluminum chloride

would be rapidly hydrated (Pierce 1970). The hydrated aluminum chloride would further

react with water to form aluminum hydroxide [AI(H20)3(OIO3] which is a nontoxic,

colorless, and amorphous compound (Pierce 1970). Under Case 2, therefore, the existing

aluminum chloride would oxidize to a nontoxic aluminum hydroxide before being

deposited on the ground by rain.

CONCLUSIONS

Additional air quality modeling using the PCAD and INPUFF 2.3 models indicates that

HC1, aluminum oxide, and aluminum chloride produced by ASRM tests will occur in

ground-level concentrations below state and federal air quality standards. This conclusion

applies to both Case I and Case 2. Small amounts of both aluminum oxide and aluminum

chloride will be deposited on the ground and other surfaces under both Case I and Case 2

conditions. HCI, however, would be deposited only under Case 2 conditions, when it

would be dissolved in the raindrops falling to the ground. Additional topics, regarding the

behavior of the exhaust plume in the humid environment of SSC and its ability to form a

raining cumulus cloud, are addressed in Appendix E. Appendix E also contains a review

of the meteorological principles governing the exhaust plume behavior and is pertinent to
both the Case I and Case 2 discussions.
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4.3.2 Surface Water

INTRODUCTION

Environmental water chemistry is complex, and many variables are associated with
surface water characterization. In order to calculate the buffering capacity of the surface

waters (defined as creeks, sloughs, bogs, marshes, and wetlands) and to quantify the

amount of acidic input potentially resulting from test firing the ASRM, limits were placed

on the number of variables investigated. Those variables that would be expected to have
the most significant impacts on surface water characterization were fully investigated, and

include pH, alkalinity, and water volume. Other variables, which play a less critical role
in surface water characterization, were not utilized in calculations. These other variables
include runoff volume, surface water flow, and variability in rainfall pattern within the

rainfall area. Additionally, the buffering capacity of hydric soils was not taken into

account, even though these soils can help neutralize acid (Section 4.2.4). In summary, only
the most critical factors affecting surface water buffering capacity were utilized for

calculation purposes.

Existing surface water quality is compared to the estimated additional inputs from ASRM
testing in Table 4-9. Four values were used as representative surface waters: 1) the average

(geometric mean) of all the sampled sites at SSC; 2) the East Pearl River sample; 3) the Red

Fish Hatchery sample; and 4) the northern branch of Devil's Swamp sample.

In Case 2, firing takes place under unexpected conditions which would result in 100 percent
of the HCI present in the exhaust being rained down onto land and surface waters. The

location of this acid fallout would depend upon wind speed, wind direction, and so forth,
as discussed in Section 4.2.1. The concentration of this fallout would be a function of the

plume's dispersion.

Under Case 2 conditions, the pH of rainwater would drop from an average value of 4.5 to
2.9, as discussed in Section 4.2.1. The method for calculating this pH drop is shown in
Appendix D. Rainwater of pH 2.9 falling on surface waters with sufficient buffering
capacity would be expected to cause no measurable change in the acidity of the water,
while the same rainwater falling on water with insufficient buffering capaciW would be
expected to cause a temporary increase in acidity of those surface waters. The degree and

duration of the resulting increased acidity would depend on the several variables
mentioned earlier, including surface water volume, alkalinity, pH, and the volume of
rainfall.

Table 4-9 indicates the changes in acidity, as expressed by the pH changes, for the four
water samples mentioned above. The pH of the vast majority of surface waters in the

vicinity of SSC would not be affected. The pH of these waters (as "average" surface water)

would not be expected to decrease from 6.1, due to sufficient buffering capability (alkalinity
= 24.7 units) (Appendix C). Similarly, sufficient buffering capacity exists with the
groundwater supply to Red Fish Hatchery (alkalinity = 166 units, Table 4-6) to neutralize



Table 4-9. Case 2: Estimated effects of acid rain deposition from ASRM
testing on surface water pH, Stennls Space Center, Mississippi.

pH of Rain and Surface Waters

Background
Predicted Under

Case 2 Conditions

Rain 4.5 2.9

Average (Geometric Mean)
Surface Water 6.1 6.1

East Pearl River 6.3 6.3

Red Fish Hatchery 5.4 5.4

Northern branch of
Devil's Swamp 5.8 4.2
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the amount of acid input that could be expected from ASRM testing under Case 2
conditions.

An alkalinity value of 12 units was measured in the East Pearl River sample. The pH of
this sample was 6.3. Waters with a measured alkalinity of 12 units have the capacity to

neutralize 0.00024 unit of hydrogen ion. Only 0.0000005 unit of hydrogen ion/l is present
at pH 6.3. Therefore, results of these calculations indicate that waters with the pH and

alkalinity of the East Pearl River sample are adequately protected from any acidic input
that would take place from ASRM testing even under Case 2 conditions.

As seen in Table 4-9, the only reduction or impact to surface water is for the northern
branch of Devil's Swamp. Because of the low buffering capacity of this water body, the
temporary, short-term addition of acidic rain water would result in a temporary, localized
increase in acidity to pH 4.2. This was the only water sample that showed a measurable
increase in acidity, and it is representative of the estimated effects on similar shallow, low
flow, low alkaline water bodies.

The estimates given in Table 4-9 are conservative. They may overestimate the change in
pH because it assumes direct contact of rain water with surface water without any hydric

soil buffering. The increase in acidity would not be expected to remain, but would return

to background levels in a time period conservatively estimated at less than 1 week. Rapid
recovery is expected due to the replenishment of alkalinity from the underlying sediments
and soils. To summarize, the natural balance of the receiving waters would not be expected

to experience any long-term change due to the addition of predicted acid levels under Case 2
conditions.

These estimates were calculated from the best available data. Single point measurements

are insufficient to draw definitive conclusions on any water body; but collectively, they

provide a moment in time "snapshot" of existing conditions at the eight sampled sites.
Because the pH values of the eight sampled sites fall within the same general range of pH

values found through several years of water quality monitoring in and around SSC, the

results described here are believed to be representative of local surface waters.

Comparison of Existing and Predicted Conditions: Hydrogen Ion

Comparison between existing conditions OH and alkalinity) and predicted conditions
indicate that under situations that are most likely to occur (i.e., Case 1 conditions), no acid
fallout is expected from ASRM testing and there would be no impact to surface waters.
Under Case 2 conditions, there could be temporary, localized effects resulting from acid rain
on selected, small, shallow surface waters with low water volumes, low alkalinities, and

restricted water exchange rates. The net result of this evaluation is that the combination of

surface water neutralizing capacity and relatively small additions of acid even under Case
2 conditions would not result in further acidification of surface waters.
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Predicted Conditions: Aluminum

The analysis of aluminum deposition from ASRM testing considered all known toxic

species of aluminum and all potentially toxic or water soluble species of aluminum. The

deposition of aluminum oxide due to test firing the ASRM, modeled under Case 2

conditions, led to a predicted deposition of aluminum oxide equal to approximately 1.07 to

1.56 mg/m 2 tTable 4-4). This is the same as results for modeling under Case I with the

effect on surface water being the same.

CONCLUSION

Under Case 2 conditions, where rain would be present soon after test firing the ASRM, acid

depositions to surface waters would not result in any impacts to larger surface water bodies

at SSC. The natural conditions of the larger surface water bodies at SSC would remain

unaffected due to the relatively low acid input and relatively high natural buffering

capacity. The bodies of water that are small, shallow, and naturally low in alkalinity

may experience a temporary increase in acidity that would be expected to return to natural

conditions within a time period conservatively estimated at less than one week.

Case 2 aluminum depositions are the same as those predicted for Case 1. Therefore,

conclusions stated in Section 4.2.2 remain the same for aluminum.

COMPLIANCE WITH MISSISSIPPI AND FEDERAL WATER QUALITY CRITERIA

The water quality analysis presented above supports the original conclusion in the FEIS

that no significant water quality impacts are anticipated from ASRM testing at SSC. As

stated in the FEIS, NASA is committed to complying with federal and state water quality

criteria and guidelines covering effluent discharges and receiving waters.

The Mississippi criterion for pH is equivalent to or more stringent than the federal water

quality criterion. The Mississippi water quality criterion for pH requires that the normal

pH of receiving waters may not be changed more than 1.0 unit. Under Case 1 conditions,

no change in pH is predicted, thereby complying with the Mississippi criterion for pH.

Under Case 2 conditions, however, temporary pH change (greater than 1.0) is predicted for

isolated shallow, low flow, low alkaline waters. Even these waters are projected to regain

their natural acidic balance in less than a week. Thus, only under the unexpected

conditions and for a few water bodies would testing potentially violate the Mississippi

water quality criterion.

There are no specific Mississippi criteria for aluminum, but general Mississippi receiving

water quality criteria state that no toxic substances are allowed that will impair the use of

waters. Since no impairment is expected, this criterion is met.
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4.3.3 Aquatic Life

INTRODUCTION

Ifitwere torainshortly_er testing(Case 2),the pH inthe northern branch of Devil's

Swamp, and in water with similarcharacteristics,may be reduced from 5.8 to 4.2. The

aluminum concentrationsin surfacewaters are predictedto increaseby trace amounts (less

than 0.0060 rag/l)followingtesting,with or without immediate rainfall.The predicted

depositionof aluminum chlorideassociatedwith ASRM testingcorresponds to an

aluminum chloride (AICI3) concentrationin shallow surfacewaters (6inches or less)of

lessthan 0.000005 mg AICl3/l(approximately0.000001 mg Al/l).Regardless ofthe degree

of bioavailabilityof the aluminum currentlypresent in the region'ssmaller drainage areas,

many ofthese water bodies are not expected tosupport fishbecause they are too shallow or

are intermittent;thatis,they dry up during partof each year. These intermittentwater

bodies may support other aquaticorganisms, such as invertebratesand amphibian larvae.

Under the unexpected conditions, no change in pH and only trace changes in aluminum

concentrations are predicted except in drainages similar to the northern branch of Devil's

Swamp, where a temporary increase in acidity is projected. The increased acidity in the

northern branch and any similar small drainages could potentially have localized effects

on aquatic populations. However, available information indicates that existing pH and

aluminum levels in the small drainage areas where increased acidity is predicted may

already be nonconducive to most, if not all, aquatic species. Except for the small drainage

areas, more than sufficient buffering capacity exists at the other water bodies in the

vicinity of SSC. No impacts are expected at the Red Fish Hatchery. Sufficient buffering

capacity exists even under Case 2 conditions. The rainfall would cause no change in the

pH of the hatchery's water source.

CONCLUSIONS

Should rain occur soon after testing, possible impacts may occur in some small drainages

which have little buffering capacity. These areas may not currently be supporting aquatic

life.

4.3.4 Plants and Soils

POTENTIAL ACUTE EFFECTS OF HCL DEPOSITION ON PLANTS

Most of the research concerning acid rain effects on vegetation document chronic effects

resulting from acid bundup in soils, not acute effects of acid rain striking leaves, needles,

and other exposed plant parts. In laboratory experiments, however, rain acidified with

hydrochloric acid has been shown to produce lesions and bleaching in leaves, with the

degree of damage depending on the plant species, duration of exposure, and concentration of

hydrochloric acid 0acobson and Hill 1970). Acid deposition on leaves may also

prematurely remove nutrients from leaves via ion exchange and leaching (Reuss and

Johnson 1986). One case of acute damage from acid rain associated with solid rocket motor
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testing has been documented in Dade County, Florida. In this case, which occurred in

1967, Aerojet General tested a solid rocket motor while it was raining (NASA 1978). The

resulting acid fallout damaged citrus crops in the vicinity.

Acute damage to plants can be caused by acid rain, and the degree of damage is determined

by the degree of acidity in the rain and the sensitivity of the plant species. Plant species

vary widely in their tolerance of acid deposition, with many species being highly

sensitive and some species being highly tolerant. No research was identified that

documents the sensitivity of various tree species to acute damage from acid rain. However,

recent research by DuBoy and others Cm press) and summarized by Kaplan (1989) described

the relative tolerance of 216 varieties of 18 crop plants to simulated acid deposition that

was more acidic (pH 2.5) than that predicted under Case 2 conditions (pH 2.9). DuBoy and

his colleagues found that a 1-hour exposure to a simulated acid rain of pH 2.5 affected only

the most sensitive species (including soybeans). In these sensitive species, the growth rate

was reduced and leaves developed small bleached or burned spots, with damage varying

from 5 to 24 percent of the leaf area. Highly tolerant species (including winter wheat,

alfalfa, and corn) showed less than 2 percent damage to leaf area and did not exhibit a

reduced growth rate. The most significant conclusion drawn by the researchers was that

pollution danger to crops is more likely to be from sources other than acid rain, such as

from ozone and ultraviolet radiation. On the basis of this research, it appears that testing

under unexpected conditions should not result in any impacts except to the most sensitive

species. Impacts could include spotting on soybeans and other sensitive plants exposed to

acid rain. However, NASA is committed not to test when rain is predicted within 24

hours, depending on wind speeds.

As described earlier, Case 2 conditions indicate that a 0.75-inch rainfall one hour after a test

would have a pH of 2.9. The acid deposition that would result even under these Case 2

conditions is not enough to change either the soil pH, the mineralogical characteristics of

the soil, or the soil fertility (Adams 1990).

The acid in 0.75 inches of acid rain at pH 2.9 would require about 12 lbs of lime (as

limestone, CaC03) per acre to neutralize. Local farmers typically apply a ton of lime

approximately once every four years to each acre of soybeans (Baylis 1990). Thus, the

additional effect of the Case 2 rainout of HC1 totals only about 0.6 percent of the liming

needs of typical agricultural practice in the area, indicating that any incremental acid

contribution would be effectively neutralized.

CONCLUSIONS

Case 2 analyses for impacts to plants conclude that some leaf spotting from HCI exposure

could occur to the most sensitive species only if a test firing were conducted during or

shortly before rain. Similarly, Case 2 analyses for impacts to soils demonstrated that the

quantity of HCI that may rain out is less than the natural acidity level of the sons which

is dealt with by the local agricultural practice of applying lime. Given the best available

information on amounts and deposition of emission products, soil buffering capacity, and
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effects of acid rain on plants and sons, it is apparent that ASRM testing will not result in

any long-term impacts to plants or soil, even for the Case 2 scenario.

4.3.5 Groundwater

No additional impact w_l result for the Case 2 scenario than that described in Section 4.2.5

for the Case I scenario.

4.3.6 Wildlife and Domestic Animals

Waterfowl need calcium (especially during breeding season for egg formation) that they

commonly get from eating snails. Case 2 conditions were reviewed to determine if

waterfowl could be indirectly affected by ASRM test emissions through reduced food

supplies (such as, if sn_uls would be adversely affected by the increased acidity predicted for

localized shallow, low alkaline waters). The evaluation indicated that no impacts are

expected to occur. For reduced food supplies to be injurious to waterfowl, increased acidity

in surface waters would need to occur over very large areas so that snails, their primary

food supply, would be affected over a large area. As discussed in Section 4.3 under Case 2

conditions, a short-term increased acidity is predicted only in localized water bodies and

not over the majority of waters at or near SSC. Because no widespread effect on surface

water acidity is predicted, no widespread effect on food supplies and therefore no effect on

waterfowl is expected.

The Pearl River Delta (nine miles south of SSC) and the Pearl River State Wildlife

Management Area (4 miles west of SSC) are very important to migratory shorebirds,

especially in the spring (late March to late May) and fall (early September to early

November) (Jackson 1990). No impacts from increases in acidity are projected for the

animals inhabiting these areas due to the large size of the water bodies present and the

buffering capacity of these waters.

CONCLUSIONS

If rain were to occur shortly after testing, the increase in acidity in small drainages

potentially could have localized effects on amphibian (tadpoles, snails, etc.) populations as
discussed in Section 4.3.3. No adverse effect of acid rain on terrestrial animals is predicted.

4.4 CUMULATIVE EFFECTS

INTRODUCTION

The long-term effects of ASRM testing were analyzed to address the poss_le accumulation

of deposited aluminum oxide and aluminum chlorides (particulate matter). Water quality

certification under Section 401 of the Clean Water Act also requires information on

cumulative effects.

4-61



The repeated release of HCI into the atmosphere will contribute a small fraction to the

existing emissions of acid gases from the region (southern states). Long-term HCI impacts

have therefore been addressed in the context of regional acid gas emissions and regional

acid deposition patterns. Repeated testing of the ASRM over the projected 30-year life of the

program will also result in the distribution of deposited particulate matter over a wide area

on and around SSC. The issues addressed here concerning aluminum oxide and

aluminum chloride deposition include: 1) quantification of total material deposited on and

around SSC over 30 years of testing, 2) the fate of the deposited aluminum oxide and

aluminum chlorides, and 3) possible environmental effects from long-term deposition.

Cumulative HCI Impacts

The air quality impacts due to an ASRM test were analyzed in Section 4.2.1. The analysis

concluded that the deposition of HCI on and around SSC (within 12 miles of the test stand)

as well as all other areas offsite would be negligible. Although the ASRM tests are not

expected to increase the acid deposition near SSC, the HC1 from ASRM testing will make a

very small contribution to the total emissions of acid gases (mainly SO z, NO z, and HCI)

from the region around southern Mississippi. Since the regional acid deposition pattern is

primarily a result of the regional emissions of acid gases, the ASRM tests may contribute a

small amount to this deposition pattern.

The annual emissions of SO 2 and NO 2 from all sources (industrial and private) in the

southern states around Mississippi (including Alabama, Georgia, Florida, Kentucky, North

Carolina, South Carolina, and Tennessee) have been estimated by the National Acid

Precipitation Assessment Program (NAPAP 1990). 1/ Additionally, the annual air

emissions of HC1 from all sources in the same southeast region of the United States have

been estimated by EPA (EPA 1985). Table 4-10 presents these emission rates together with

the predicted annual emissions of HCI from ASRM testing (assuming four tests per year).

The HC1 from ASRM testing will only constitute about 0.05 percent (that is, 5/100ths of a

percent) of the acid gas emissions that contribute to the acid deposition in the southeastern
United States.

The distribution of acid rain on the continental United States is determined by the large-

scale (continental) atmospheric motions and the strengths of the sources of acid gases. The

average acid rain distribution pattern in the southeastern United States (Figure 4-6) is

primarily the result of the sources in that region. The HCl from the ASRM tests, therefore,

will only add a slight contribution to this general deposition pattern.

1/ The NAPAP 1990 study organized emission information into geographical regions. Regional
emissions which can best be compared to ASRM emissions include emissions from the states
listed above.

4-62



Table 4-10. Annual emission rates of acid gases from southeastern states a/
of the United States.

Compound
AnnualEmissionRate

(tons/year)

RegionalSO2b/

RegionalNOxb/

RegionalHCIty

ASRMHCI

• 5,300,000

3,700,000

151,000

508

a/ SoutheasternstatesincludeMississippi,Alabama,Georgia,Florida,Kentucky,NorthCarolina,
SouthCarolina,andTennessee.

b/ Source: NAPAP 1990

Aluminum Oxide and Aluminum Chloride Depositions

The distribution of exhaust product deposition was modeled based on the frequency with

which the wind blows in any one direction. The frequency distribution of wind direction

is generally depicted by a wind rose. The annual wind rose for SSC for winds at about

10,000 feet aloft (NASA 1990c) was used to estimate the cumulative depositions from the

ASRM program. These upper-level wind directions were chosen because they best

represent the directions the exhaust plume will follow.

The cumulative 30-year depositions of aluminum oxide and aluminum chlorides were

estimated by using the wind rose described above and the deposition data presented in

Table 4-4. In order to remain conservative, the same upper-level wind speeds were

assumed for all test firings and testing was assumed to occur four times every year for 30

years (120 total tests). The total amounts of deposited aluminum oxide or aluminum

chlorides were calculated from the depositions at each of the live distances given in Table

4-4, multiplied by 120 tests. The cumulative deposition distn'bution was estimated by

multiplying the total deposition at each of five downwind distances by the percentage

frequency the wind blows in a particular direction.

The cumulative deposition distn'butions in F'tgure 4-7 indicate that most of the deposition

will occur to the east of the test stand. The deposition map for aluminum oxide (Figure 4-7)

shows a maximum isopleth of 18 mg/m 2 approximately 6 miles east of the test stand.
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Cumulative depositions at Slidell and Picayune, however, are only about 4.2 mg/m 2 over

30 years. The deposition pattern for aluminum chlorides is similar to that for aluminum

oxide; however, the total depositions are 0.014 percent smaller.

As discussed below, the soils and surface waters w_ll neutralize, transform, and remove

most of the deposited material from each test more rapidly than the material will build up

due to successive tests. The deposition map (F'tgure 4-7) therefore shows the total amount of

material deposited over 30 years but does not represent a buildup of material. Cumulative

effects of ASRM depositions are discussed below for plants and soils, surface water and

aquatic life, and groundwater.

CUMULATIVE EFFECTS ON PLANTS AND SOILS

No long-term effect on plants and sons is expected even with 30 years of testing. As noted

in Section 4.2.4, aluminum is immobilized by organic acids in the soils. The maximum

deposition of aluminum oxide per test (1.56 mg/m 2) is equal to only 0.0078 pound per acre,

compared to the existing surface layer aluminum of 900 pounds per acre. The cumulative

effect of 120 tests over 30 years would be far too small to _ect the natural balance of the
soils.

Given the buffering capacity of local soils, soil chemistry is not expected to change and soil

fertility will not decline due to additions of acid. Reuss and Johnson (1986) have estimated

that, for acid soils, soil chemistry (proportion of different nutrients, aluminum, etc.) would

begin to change only under heavy and constant (year round) acid deposition over decades.

At most, ASRM testing will occur only four times per year, not year round, and the

incremental addition of acid to the soil would be extremely small. Therefore ASRM

testing will likely have no effect on soil chemistry even after 30 years of testing.

Cumulative Effects on Surface Water and Aquatic Life

Even if all aluminum compounds were assumed to be potentially toxic, conclusions

reached in Section 4.2.2 indicate that aluminum entering surface waters in and around

SSC would be bound by organic acids in the water. Although some of the water samples

indicate existing aluminum concentrations that exceed EPA criteria for protecting fish, it is

also clear that other mechanisms are at work that allow even sensitive fish species such as

striped bass to live in these waters. The additional aluminum loading associated with 30

years of ASRM testing operations would add negligible amounts of aluminum to this

system.

Cumulative Effects on Groundwater

Groundwater quality will be protected over the long term through the same features at

work in the short term. As noted in Section 4.3, these features include the buffering

capabilities of the soil, surface water, and groundwater;, the clay aquitards that restrict flow

between aquifers; and the upward hydraulic gradient that directs groundwater flow

upward rather than downward. All of these features will work to prevent any

contamination in the groundwater. Thus, no cumulative impacts will occur.
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5.0 HUMAN HEALTH EFFECTS

5.1 INTRODUCTION

Combustion of solid propellant during static testing will release large quantifies of

hydrogen chloride and aluminum oxide. Other principal constituents of the rocket exhaust

include carbon monoxide, aluminum chloride, nitrogen oxides, and chlorine gas (see

Section 4.2.2 for estimated emission rates). None of these constituents has been

demonstrated to cause, or are even suspected of causing cancer or reproductive and

developmental effects in humans or animals.

A typical human health risk assessment estimates contaminant exposure concentrations,

determines who is or may be exposed, estimates contaminant intakes (doses) on a daily

basis for different exposure pathways, determines the appropriate toxicity values (i.e., EPA

reference doses and cancer potency factors), and characterizes the potential for adverse

health effects (both cancer and noncancer) to occur. This methodology, especially the

calculation of exposure doses, was not considered appropriate in the assessment of ASRM

emissions because none of the contaminants is known to have long-term cancerous effects.

More importantly, the exposures will occur only for a period of ten minutes to two hours at

most, and only up to four times per year. Estimation of dally doses is not applicable to this

sporadic exposure scenario since these contaminants are readily eliminated from the body

and their potential effects are rapidly reversible. Therefore, the approach used for this

human health evaluation was to compare predicted contaminant air concentrations from

ASRM testing to the most appropriate federal and state standards and guidelines.

The following sections discuss the human health effects of exposure to ASRM exhaust

constituents. Since the predominant exposure pathway for exhaust constituents is

inhalation, the analyses focus on Case 1 conditions which are predicted to produce airborne

concentrations of HCI, aluminum oxide, and aluminum chloride. No probable exposure

pathway was identified for Case 2 (acid rain), because raindrops are too large to be inhaled.

Therefore, the airborne concentrations and chemical fate of exhaust plume constituents

used in these analyses are as described in Section 4.2.2. These exposure conditions are

summarized in Section 5.2. The potential short-term and long-term health effects of HCI,

acid aerosols, and aluminum oxide are discussed in Section 5.3. Included in Section 5.3 are

current research observations and theories regarding the development of Alzheimer's

disease, with emphasis on the association of human exposure to aluminum. Section 5.4

presents the summary and conclusions regarding human health effects, and Section 5.5

introduces members of a consultant panel of recognized medical researchers who reviewed

the draft Section 5.0 for technical accuracy and completeness. Appendix F contains a

detailed literature review of the relevant theories regarding the development of

Alzheimer's disease, with particular emphasis on the role of aluminum. Finally, Section

5.6 discusses public and employee health and safety as they pertain to air emissions caused

by the unlikely event of a case-rupture during static testing.
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5.2 PREDICTED EXPOSURE CONDITIONS

As discussed in Section 4.2.2, ASRM test firings under Case I will release a hot plume

containing primarily HC1 and aluminum oxide, which will travel horizontally several

hundred feet prior to rising into the almosphere to a centerline altitude of about 13,000 feet.

When the plume reaches its maximum altitude, it will have lateral and vertical

dimensions of several miles as it moves downwind. Ground-level concentrations at any

one point will last for ten minutes to two hours depending on wind speed. Since gaseous

HC1 is hydroscopic (readily dissolves in water), much of the emitted HCI will be found as

an aqueous aerosol when the relative humidity is near 100 percent. Aluminum oxide is a

relatively stable compound that is insoluble in water and weak acids. As stated earlier,

one of the major human health concerns is potential conversion of emitted aluminum

oxide to aluminum chloride in the presence of water and HC1. However, as discussed

previously in this report, the formation of aluminum chloride is not thermodynamically

favored. In fact, it is l_ely that most, if not all, of the aluminum chloride that is emitted

in the exhaust will actually be converted to aluminum oxide or aluminum hydroxide in

the exhaust plume as the plume cools and mixes with the air.

The air quality dispersion modeling predicts that the point of maximum instantaneous air

concentration of HC1, aluminum oxide, and aluminum chloride would occur

approximately 0.6 mile from the rocket test stand, and the maximum 24-hour average

concentration would occur approximately 4.2 miles from the test stand (see Section 4.2.2).

Maximum HCI, aluminum oxide, and aluminum chloride concentrations at the 0.6-mile

distance were computed to be 0.24, 0.40, and 0.000059 mg/m 3, respectively (Table 5-1).

Maximum and time-weighted average concentrations of HCI, aluminum oxide and

aluminum chloride at 3, 4.2, 6, and 12 miles from the test stand are also presented in Table
5-1.

The distance from the test firing stand to the boundary of the buffer zone ranges from

approximately 6 to 9 miles. The nearest cities, including Pearlington, Picayune, Slidell,

Bay St. Louis, Pass Christian, and Long Beach, are located within 6 to 18 miles from the

rocket test stand. ASRM workers not directly associated with each test are located at least 2

miles from the test stand, as are other employees at SSC. ASRM workers will be removed

to safe distances or into protective bu_dings prior to and during each test firing.

5.3 TOXICITY AND EXPOSURE ASSESSMENT

The following sections address toxicological and exposure issues associated with HCf, HC1

aerosols, aluminum oxide, and aluminum oxide/HCl/water mixtures.
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5.3.1 Potential Human Health Effects of HCI

SHORT-TERM HEALTH EFFECI_

Toxicological Considerations. HC1 is highly water soluble and reacts with surface
components of the upper respiratory tract. The hydrogen ion and chloride ion are natural
constituents of near coastal atmospheres (Finlayson-Pitts and Pitts 1986) as well as all
mammalian species. Two important chemical defenses against inhaled acidic compounds
include endogenous (naturally occurring in the body) ammonia and airway surface liquid
buffers (i.e., mucous) CEPA1988b). Naturally occurring ammonia present on the surface of
the nasal tract and mouth may react and neutralize (i.e., have a scrubbing effect on) low
levels of acidic compounds such as HCI (I.arson et al. 1982; EPA 1988b).

If HC1 concentrations are quite high, such that they overwhelm the "scrubbing" capacity of
the upper respiratory tract, then HC1 may be deposited in the lower respiratory tract where

it may cause acute irritation of the respiratory tract. This type of reaction only occurs at

concentrations at least 100 times higher than those that would be observed at SSC. For
example, Henderson and Haggard (1943) reported lower throat irritation in humans after a
short exposure to 52 mg/m 3 HCI, while no adverse effects were observed from prolonged
exposure to 15 mg/m 3. Further, rats exposed to 15 mg/m 3 HC1 for a lifetime did not

experience any serious irritating effects to the nasal and pulmonary epithelium

(Sellakumar et al. 1985). In addition, it appears that rodent species are an inadequate model

for evaluating the toxicity of irritant gases in humans, in part because the rat is primarily a

nose breather, unlike monkeys and humans which breathe through both the nose and the

mouth. Based on anatomical comparisons, the baboon has the greatest upper airway

similarity to children (Kaplan et al. 1988). Kaplan et al. (1988) reported no adverse short-

term or long-term effects on pulmonary functions in anesthetized baboons exposed to HCf at

exceptionally high concentrations (735 to 14,723 mg/m 3) for 15 minutes. The predicted
ASRM-related concentrations of HC1 at 0.6 mne from the testing site (0.24 mg/m 3, Table
5-1) are well below the "no-observed-adverse-effect-level" NOAED observed in baboons (735

to 14,723 mg/m 3) as well as the NOAEL for humans of 15 mg/m 3 (Henderson and

Haggard 1943). Therefore, based on the low expected concentrations from ASRM testing

and natural neutralizing capacity of the oral-nasal passages, no acute or chronic respiratory
effects or systemic effects of HCI are expected. Since the maximum instantaneous air
concentrations decrease with distance from the test stand, SSC workers between 2 and 4

miles from the test stand would receive lower doses than the levels predicted at 0.6 mile.

Regulatory Guidelines and Standards. No federal ambient air quality standards exist
for HCI. Therefore, the predicted air concentrations were compared with relevant
occupational standards issued by the Occupational Safety and Health Administration
(OSHA 1989), and with air quality guidelines recommended by the state of Mississippi and

the National Research Council (NRC) Committee on Toxicology (NRC 1987) (see Table 5-1).

A recommended air concentration (RAC) established by the EPA (55 FR 17862) for a 3-
minute average HCI concentration from hazardous waste incinerator emissions was also

considered for comparison; however, it was not deemed an appropriate comparison because
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the 3-minute RAC was established for continuous 24-hour HC1 emissions, while ASRM

emissions exposure, even to persons directly downwind, will occur only for about ten

minutes to two hours no more than 4 times per year with a few months between tests.

brief discussion comparing predicted HCI concentrations with appropriate existing

regulatory standards or guidelines follows.

A

The maximum HC1 concentration at 0.6 mile, the point of maximum instantaneous

average air concentration, is 0.24 mg/m 3, well below the OSHA promulgated maximum

allowed occupational exposure level of 7.0 mg/m 3 (0SHA 1989). In addition, the state of

Mississippi has derived a 24-hour average HCI air quality guideline for maximum HCf air

concentration based on 1 percent of the American Conference for Governmental Industrial

Hygienist (ACGIH) recommended occupational standard [threshold limit value (TLV)].

TLVs apply to airborne concentrations of substances and represent conditions under which

it is believed that nearly all workers may be repeatedly exposed day after day without

adverse effects. As stated by ACGIH (1989), TLVs are based on the best available

information from industrial experience, and from human and experimental studies.

Although TLVs have received some criticism, they are routinely used by state and federal

regulatory agencies to evaluate occupational exposures and are increasingly being used to

develop ambient air quality standards (Calebrese and Kenyon 1989). Based on 1 percent of

the ACGIH TLV of 7.5 mg/m 3 (ACGIH 1989), the Mississippi guideline permits a

maximum 24-hour average HCI air concentration of 0.07 mg/m 3 (MBPC 1990). This 24-

hour average HCI concentration guideline is approximately 9 times higher than the

expected concentration at 4.2 miles (0.0088 mg/m3), the point of maximum 24-hour average

HC1 concentration indicating that no adverse health effects from HCI emissions to workers

or the general population are projected. As indicated in Table 5-1, the 24-hour average

concentration of HC1 is lower between 2 and 4 miles from the test stand than at 4.2 miles.

Therefore, no SSC workers would experience adverse health effects from HCI emissions.

A more appropriate guideline to compare with ASRM HC1 emissions is the short-term

public emergency guidance levels (SPEGLs) developed by the National Research Council

Committee on Toxicology specifically for short-term, intermittent community exposures

occurring during Space Shuttle launches. To conservatively protect sensitive populations

such as infants, children, the elderly, and people with respiratory diseases from the large

quantities of HCI emitted during Space Shuttle launches, the Committee on Toxicology

recommended a 1-hour SPEGL of 1.5 mg/m 3 (NRC 1987). The Mississippi Bureau of

Pollution Control further limits HCI daily exposure to a 24-hour average of 0.007 mg/m 3 to

protect the public. In other words, HCI concentrations averaged over a 1-hour and 24-hour

time period should not exceed 1.5 mg/m 3 and 0.07 mg/m 3, respectively. As shown in

Table 5-1, the maximum predicted 1-hour and 24-hour HC1 air concentrations at 4.2 miles

from the test stand are approximately 10 times lower than either of these guidelines and

therefore are considered protective of the health and safety of workers as well as off-site

populations. Again, average concentrations at locations closer than 4.2 miles w_'ll be lower

than the maximum at 4.2 miles.
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LONG-TERM HEALTH EFFECTS

ASRM tests wiU be conducted infrequently (4 times per year) and are of short duration
(2 minutes), resulting in predicted HCI concentrations that are well below guidelines for

maximum 1-hour and 24-hour exposures established by the National Research Council, the
state of Mississippi, and OSHA. Therefore, no long-term health effects from HC1 emissions
are anticipated. While evidence that cumulative health effects may occur from acute,
intermittent exposures to certain toxic organic compounds such as PCBs or dioxins, these

compounds are entirely different from ASRM type emissions. While hydrophobic

compounds (i.e., compounds not soluble in water but which may be soluble in fats such as
PCBs and dioxins) persist within the body fats for long periods of time, hydrophilic
compounds (i.e., compounds soluble in water) such as HCI do not accumulate, are

metabolically controlled, and are readily eliminated from the body. No evidence of
cumulative health effects from intermittent exposures to low-levels of HCI was found.
Since occasional exposures to levels of HCI from ASRM testing are sufficiently low to
prevent adverse acute effects, no adverse chronic effects are expected.

5.3.2 Potential Health Effects of Acid Aerosols

Acid aerosols are suspended solid or liquid particles with a pH less than 7, resulting from

the movement of acids from the gaseous phase into liquid aerosols. The available

information on concentration patterns and human exposures to atmospheric aerosols is
sparse (EPA 1988b). Available data indicate that the atmospheric concentrations of acid

aerosols depend upon variable conditions such as relative humidity, temperature, and the

background composition of other pollutants. Insufficient data exist to quantify the extent of
conversion of gaseous HCI to aqueous aerosols in the atmosphere. However, hydrogen

chloride readily associates with water such that atmospheric HCI is likely to exist to some

degree in the aerosol form (see Section 4.22).

SHORT-TERM HEALTH EFFECTS

Toxicological Considerations. No studies were found regarding potential health effects
associated with exposure to HCl-formed acid aerosols. Most of the research conducted in

this area has focused on strong acid sulfates such as sulfuric acid and ammonium bisulfate.
However, since anhydrous HCI gas is highly reactive with water and exerts its irritant
effect by desiccation (dehydration) and corrosion, exposures to HCI gas are potentially more
dangerous than exposures to HC1 aerosols (NRC 1987; EPA 1969). It is also possible that

aerosols are more efficiently deposited than are gases.

Two important chemical defenses against inhaled acids include airway surface liquid

buffers (mucous) and endogenous ammonia (EPA 1988b). Endogenous ammonia and the

buffering capacity of mucous material in the respiratory tract are capable of neutralizing

low concentrations of acid aerosols and, hence, play an important role in determining the

airway toxicity of acid aerosols (EPA 1988b). Respirable acid particles (i.e., smaller than 10

microns) are rapidly neutralized by resident ammonia and airway mucous in the body.
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The total capacity of the mouth and respiratory tract to neutralize inhaled acids is
substantial and variable depending on particle size, concentration of ammonia in the

airways, concentration of acid in the aerosol, and residence time of aerosol in the airways
(EPA 1988b).

Little information is available to precisely quantify the extent of HC1 aerosol formation
from ASRM testing. Assuming that all of the HC1 gas resulting from ASRM testing forms
acid aerosols, which is not expected, the maximum instantaneous HCI concentration

resulting from ASRM testing (0.24 mg/m 3) may be compared, as a surrogate, to
concentrations of sulfuric acid aerosol which have been reported to cause no adverse health

effects in studies with human volunteers. For example, no adverse effects on pulmonary

function (as measured by expiratory volume) have been reported in normal subjects
exposed to sulfuric acid aerosols below 0.5 mg/m 3 (EPA 1988b).

Small changes in spirometry (measurement of breathing capacity) have been observed in
normal subjects after laboratory exposure to 1.0 mg/m 3 sulfuric acid aerosols, although

these changes have not been consistently observed. There is, however, one report of a
small reduction in pulmonary function (i.e., forced expiratory volume in one second;

FEV 1) in nine adolescent asthmatics exposed in the laboratory while exercising in an
environment with concentrations of sulfuric acid aerosols as low as 0.068 mg/m 3 (Koenig

et al. 1989). The reported reduction in FEV1 in those subjects was 6 percent A reduction in
FEV1 of 5 percent is considered significant for some asthmatics. The reported reduction in
FEW1 is, in all probability, rapidly reversible after exposure ceases. At the concentration
studied, no effects were observed in adult asthmatics. It is not absolutely clear that it is
appropriate to compare HC1 aerosols to sulfuric acid aerosols since sulfuric acid has over
twice the effective acidity as HCI. Also, the small reduction in respiratory volumes was
observed in a small group (sample size of 9) of sensitive individuals. The results of the

Koenig et al. study (1989) must be considered preliminary and should not be extrapolated to

the general population surrounding SSC.

Assuming a worst case where HCI and sulfuric acid are equally effective at producing
respiratory effects (although it is believed that sulfuric acid is more toxic), the maximum

possible concentration of HCI aerosol (0.24 mg/m 3) is below the no-effect level for sulfuric

acid (0.5 rag/m3). On the basis of this information, adverse health effects in normal

subjects from HCI emissions is not projected. Only one study using 9 subjects showed any

effects at levels below the predicted maximum of 0.24 mg/m 3. Therefore, it is projected that

ASRM testing will not result in significant or prolonged health impacts even to exercising
adolescent asthmatics since HCi concentrations from ASRM testing are short lived. The

maximum one-hour average concentrations are more applicable to exercising asthmatics
and are 1.6 times lower than the maximum values at 0.6 mile from the test stand (Table

5-1).

Regulatory Guidelines and Standards. Currently, there are no federal ambient air
quality standards or guidelines, nor any occupational standards, specifically for acid
aerosols. However, EPA is considering listing acid aerosols as a separate criteria pollutant
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(EPA 1988b). Because of the absence of any guidance, exposure to HC1 aerosols was

evaluated in this assessment based solely on the sulfuric acid data.

LONG-TERM HEALTH EFFECTS

As stated above, it is not expected that any short-term health effects will occur since ASRM

testing is conducted infrequently, and for short durations. Furthermore, no long-term

health effects are expected from potential acid aerosol formation. This conclusion is

justified based on the analyses described in Section 4.2.2, which show that formation of

HCI aerosols is limited in atmospheric conditions with a relative humidity less than 100

percent Even assuming that all of the HCI dissolves in aqueous aerosols, the ambient HCI

concentration would be so low (Table 5-1) that no long-term health effects are anticipated.

5.3.3 Potential Health Effects of Acid-Coated Particles

NASA investigations of ground-level aluminum oxide particulates from Space Shuttle

emissions indicate that some aluminum oxide particles that collected on the ground had a

slight acidic coating, and some chlorides were also found (NASA 1983). Upper-level

airborne samples of aluminum oxide in the Shuttle plume indicate that some chlorides

formed on the particles (Cofer et al. 1987). As explained in Section 4.2.2, the conversion of

aluminum oxide to aluminum chloride does not appear to be thermodynamically favored

at ambient temperatures. At the temperatures and the water content expected to be found in

the atmosphere, it is more favorable for the chloride to be converted to the oxide (the

nontoxic, stable form) rather than the oxide to the chloride. To address the specific concern

that acid-coated particles may have an enhanced effect on respiratory function (i.e., greater

combined effect than either acid aerosols or particulates alone), the following section briefly

discusses the toxicology of acid-coated particles as they apply to ASRM testing.

A review of the scientific literature demonstrated that information on the toxicological

effects of HCI acid-coated aluminum oxide particles was sparse. Wohlslagel et al. (1975)

conducted experiments with HCI, hydrogen fluoride, and aluminum oxide to examine the

potential synergistic, additive, or antagonistic effects due to simultaneous exposures. They

found no synergistic or additive effect on lethality due to simultaneous, 60-minute exposure

to HCI and aluminum oxide. In recent studies, Amdur and Chen (1989) reported an

enhanced effect (i.e., a cumulative effect greater than the sum of the effect of each individual

pollutan0 on bronchial reactivity in guinea pigs exposed to zinc oxide particles that were

coated with sulfuric acid aerosols. These findings appear to suggest that sulfuric acid-coated

particulates enhance the pulmonary effects of acid aerosols; however, these results are not

directly applicable to aluminum oxide and HCI emissions at SSC for the following reasons:

Zinc oxide alone affects pulmonary function at concentrations around 5 mg/m s

(EPA 1987b), whne aluminum oxide produces no observable effect on lung function

even at high concentrations (EPA 1990). Furthermore, the size range of particles

used in this study (median less than 0.05 rag) is much smaller than those emitted

from ASRM testing.
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The repeated exposures in the Amdur and Chen study were more intense and of

longer duration (3 hours per day for 5 consecutive days) than those planned for

ASRM testing (less than 2 hours per day, 4 days per year), although cumulative

effects were observed at sulfuric acid concentrations as low as 20 mg/m 3.

The results of the Amdur and Chen study have not been substantiated with other

compounds (e.g., HC1). Interestingly, animals exposed 3 hours each day Monday

through Friday and then rested on Saturday and Sunday, displayed normal

pulmonary functions when tested on Monday (Amdur and Chen 1989). This

suggests that some mechanism of repair occurs following the initial adverse effect.

Further, the post-exposure lung function tests on Monday were also normal. It

would therefore appear that despite evidence that sulfuric acid-coated zinc oxide

particles produce an enhanced effect on pulmonary function, a brief period of

nonexposure enabled full recovery.

In summary, given the low emission concentrations associated with ASRM testing, the

benign nature of aluminum oxide (see Section 5.3.4), and the quick recovery time of

animals exposed to sulfuric acid-coated zinc oxide, no enhanced acute or chronic adverse

pulmonary effects from acid-coated aluminum oxide particles are expected.

5.3.4 Potential Health Effects of Aluminum Oxide Exposures

SHORT-TERM HEALTH EFFECTS

Toxicological Considerations. Aluminum oxide is the primary product of aluminum

combustion. It is a relatively stable compound which is insoluble in water, dilute acids,

and basic solutions. Aluminum compounds are normal components of the human diet,

and people ingest aluminum in both food and water. The normal intake is between 10 to

100 rag/day. Most soft tissues in the body contain between 0.2 to 0.6 mg of aluminum per

gram of tissue (Goyer 1986). Aluminum oxide is poorly absorbed from the intestines and

lungs. ,.

Aluminum oxide is considered an inert compound. After an exhaustive review of the

toxicological literature, the EPA concluded that no evidence of acute (short-term) toxicity,

reproductive effects or mutagenic effects of aluminum oxide have been reported in exposed

workers or laboratory animals (EPA 1990; ACGIH 1989). The benign nature of aluminum

oxide is illustrated by one study of the respiratory effects of fiber-epoxy dusts on rats

(Luchtel et al. 1989) which used aluminum oxide as an inert control dust. Control rats

exposed to aluminum oxide in this study did not develop fibrotic lesions. In addition,

Wohlslagel et al. (1975) exposed rats to up to 478 mg/m 3 of aluminum dust for 60 minutes

with no immediate post-exposure toxic effects and no observed toxic effects at the 14.day
sacrifice.
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Regulatory Guidance and Standards. Aluminum oxide is considered an inert, or
unreactive, "nuisance" particulate with no significant toxic effects to lungs or other body
organs (ACGIH 1989; EPA 1990). Since federal ambient air quality standards do not exist

for aluminum oxide and it is considered as particulate matter, the projected air

concentrations associated with ASRM testing were compared with the average 24-hour
national ambient air quality standard for nonspecific particulate matter (e.g., dust, smoke,

etc.) of 0.15 mg/m 3 (EPA 1989b). The expected 24-hour average ground-level (i.e., breathing
zone) air concentration of aluminum oxide at 4.2 miles from the ASRM test stand (the

point of maximum 24-hour average concentrations) is 0.015 mg/m 3, which is 10 times
lower than the national ambient air standard for particulate matter. The maximum
background ambient 24-hour concentration of particulate matter in air at SSC is 0.046
mg/m 3. The combined concentration of ambient particulate matter and the maximum
24-hour average aluminum oxide is 0.061 mg/m 3 (0.046 + 0.015 mg/ma), still well below
the national air quality standard. Therefore, ASRM emissions will not increase the
ambient concentration of particulate matter above the national ambient air quality

standard to a level considered unhealthy. Furthermore, the occupational limit for an
8-hour exposure to aluminum oxide is 10 mg/m 3 (OSHA 1989). This occupational limit is

25 times higher than the predicted maximum instantaneous aluminum oxide
concentration at 0.6 mile. Given the relatively inert properties of aluminum oxide and the

low predicted maximum air concentration associated with ASRM testing, no short-term

human health effects are projected for SSC workers or residents in off-site communities.

LONG-TERM HEALTH EFFECTS

There is no evidence of chronic (long-term) toxicity, carcinogenicity, reproductive effects, or
mutagenic effects of aluminum oxide reported in workers or laboratory animals (EPA

1990; ACGIH 1989). Some studies have indicated minimal fibrogenic growth
(development of fibers) in the lungs of long-term workers exposed to high concentrations of
complex mixtures of aluminum dust, aluminum oxide and silica (Dinman 1988).

Reports of health effects due to heavy and prolonged (life-time) aluminum oxide dust
exposure to industrial workers such as aluminum smelter workers (Gilks and Churg 1987)
cannot be compared to the ASRM testing because the exposure duration and concentrations
from ASRM testing are dramatically lower. In an animal inhalation study, aluminum
oxide was efficiently cleared from the lung and demonstrated little or no fibrogenic
potential (Sjogren et al. 1985).

Recognizing the toxicologically inert properties of aluminum oxide, EPA recently deleted
nonfibrous aluminum oxide from its list of toxic chemicals (EPA 1990). EPA also
determined that nonfibrous aluminum oxide did not meet the criteria for causing acute
and chronic human health effects, carcinogenicity, or environmental toxicity (EPA 1990).
EPA concluded that there was no evidence that nonfibrous aluminum oxide causes or "can

be reasonably expected to cause" adverse health and/or environmental effects (EPA 1990).
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Given the low aluminum oxide concentrations projected from ASRM emissions and the

generally inert toxic properties of aluminum oxide, exposure from ASRM testing will not

result in adverse long-term health effects.

Human health concerns have been raised about the possible connection between aluminum

and neurological disorders such as Alzheimer's disease. It should be emphasized that

ASRM emissions are comprised almost exclusively of chemically stable (i.e., not

bioavailable) aluminum oxide with trace amounts of aluminum chloride. There has not

been any link between aluminum oxide and Alzheimer's disease. However, because of the

public's concern, a further comprehensive literature review was conducted on aluminum

and Alzheimer's disease. This literature review is summarized below and presented in

detail in Appendix F.

Although aluminum compounds are known to induce certain neurological effects in

laboratory animals and is present in high concentrations in damaged neurons of

Alzheimer's patients and persons with other neurological disorders, its link as a cause of

Alzheimer's disease or even its role in the progress of the disease has not been scientifically

established. EPA, in a recent review of aluminum toxicity, had found no evidence that

supports the theories that aluminum plays a pathological role (i.e., causes disease) in

Alzheimer's disease, amyotrophic lateral sclerosis and Parkinson-dementia (EPA 1990).

While there have been many popular articles written on the subject and many theories

have been advanced, there is a lack of compelling or sufficient evidence which supports the

hypothesis of any direct causal role of aluminum in Alzheimer's disease development.

Several research groups currently continue to investigate the role of aluminum in

Alzheimer's disease.

It is not clear whether the high levels of aluminum that are present in the neurofibrillary

tangles (twisted helical neurons in the brain) of Alzheimer's patients is a cause or a

secondary effect as a result of the disease (Crapper McLachlan 1985). As presented in

Appendix F, there are certain observations that indicate some role of aluminum in

Alzheimer's disease as well as observations that seem to refute an etiological (causative)

role. For example, in Guam Parkinson-dementia subjects, the neurofibrillary tangles in the

brains of persons with the disease can contain up to 300 times the aluminum concentration

compared to the adjacent nontangled neurons of those of normal subjects (Perl et al. 1982;

Perl et al. 1986). Whatever combination(s) of genetic and environmental factors that may

be responsible for neurological disorders on Guam, it requires a long time (around 20 years)

for immigrants to develop such disorders. Similarly, patients with Alzheimer's disease

also have elevated aluminum levels in tangle-beating neurons. Injection of aluminum

compounds into the brain of laboratory animals produces neurofibrillary tangles, although

structurally different from those seen in Alzheimer's disease. Furthermore, an

epidemiological study reported a slight increased risk of Alzheimer's disease in regions

with elevated aluminum levels in drinking water relative to areas with lower aluminum

levels (Martyn et al. 1989). However, the results of this study are extremely controversial

due to poor estimation of exposures, study design, and other factors.
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Central to the question of the role of aluminum in neurological disorders is =How does the

aluminum pass through the blood-brain barrier (a fatty layer surrounding the brain and

central nervous system which prevents many chemicals from entering the brain), since it
is not normally transported?" This implies a breakdown of the barrier to allow the

aluminum to migrate to the neurons and then associate with the neurofibrills.

Most of these studies have produced rather interesting results but have not directly
associated aluminum exposure as a cause of Alzheimer's disease. Therefore, at this time, a

conclusive determination of whether aluminum plays a significant role in the

development of neurological disorders is not possible. However, in trying to assess

whether ASRM testing would have any adverse effects, it is important to recognize that

the concern and controversy about Alzheimer's disease pertains to exposure to unknown

species of aluminum. Samples taken from actual Space Shuttle emissions (NASA 1989a),

and from ASRM dispersion modeling, indicate that emissions are comprised almost

exclusively of nonfibrous aluminum oxide that are relatively environmentally immobile

and inert. In addition, since the predicted concentrations of aluminum oxide are quite low

at 4.2 miles from the test stand (0.015 mg/m 3, maximum 24-hour avg.) and aluminum

oxide is not readily absorbed into the body, the contribution of ASRM emissions to any

overall aluminum intake appears to be exceedingly small. Average daily intake in food
and water by persons not exposed to ASRM testing varies between 5 and 50 mg. Therefore,
given the information available in the literature and given the exposure conditions at

points of maximum air concentration, there does not appear to be any enhanced risk of
neurological disorders, including Alzheimer's disease, associated with ASRM testing.

5.4 SUMMARY AND CONCLUSIONS

As noted in the FEIS, and as further documented in these supplemental evaluations,

potential exposures to HCI and aluminum oxide in ASRM emissions are not anticipated to
result in adverse human health impacts. This conclusion is based on several key factors:
1) predicted HCI concentrations are below ambient air quality criteria; 2) no significant
health impacts from acid aerosols are expected based on comparison with sulfuric acid
aerosol toxicity; and 3) the predicted concentrations of aluminum oxide do not exceed the

criteria for particulate matter.

Although aluminum may induce certain neurotoxic effects and is present in the

neurofibriUary tangles of patients with Alzheimer's disease and Parkinson-dementia, a
causal relationship between environmental exposures to aluminum and Alzheimer's
disease has not been established. Whge aluminum oxide will be a component of ASRM
exhaust, it will not exist in a bioavailable form and is not easily absorbed into the body.

There has not been any link between aluminum oxide and Alzheimer's disease. Air
dispersion modeling indicates aluminum oxide will be present only briefly and at low

concentrations as a result of ASRM testing. Therefore, it is highly unl_ely that ASRM
emissions would significantly contribute to overall normal aluminum intake such that it
could induce neurological disorders such as Alzheimer's disease. Nevertheless, to minimize
public exposure, ASRM tests will be conducted only in meteorological conditions favorable
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5.5 CONSULTANT REVIEW

A consultant panel of recognized medical researchers was assembled to review and critique

the potential for human health effects resulting from static testing of the ASRM at SSC.

The panel included the following three medical researchers:

Daniel Perl, M.D., is a professor of Pathology and Psychiatry and is the Director of the

Neuropathology Division at the Mount Sinai Medical Center in New York City. Dr. Perl is

an M.D. with over 20 years of experience in neuropathology. Dr. Perl was featured in a

December 18, 1989 Newsweek article on Alzheimer's disease and its possible connection

with aluminum. Dr. Perl has been conducting research on the link between Alzheimer's

disease and aluminum for over ten years and is widely recognized as one of the leaders in

his field.

Leonard Kurland, M.D., Dr.P.H (Public Health) is a Senior Consultant and Professor of

Epidemiology at the Mayo Clinic in Rochester, Minnesota. Dr. Kurland has over 45 years

of experience as a human health researcher and was involved in some of the earliest

studies of Alzheimer's disease and Parkinson-dementia on the island of Guam.

Lucio Costa, Ph.D. is a Research Associate Professor in the Department of Environmental

Health at the University of Washington in Seattle, Washington. Dr. Costa has over 13

years of experience conducting research in neurotoxicology. Dr. Costa is internationally

recognized as an expert on the neurotoxic effects of pesticides, metals and environmental

chemicals.

Remarks from these three experts are presented in Appendix G. Their remarks have also

been incorporated into this document and in the more detailed discussion (Appendix F) of

the potential role of aluminum in the development of Alzheimer's disease.

5.6 PUBLIC AND EMPLOYEE HEALTH AND SAFETY FOR

CASE-RUPTURE AIR EMISSIONS

5.6.1 INTRODUCTION

Accidental exposures of SSC workers and the public to air emissions resulting from

unexpected combustion of ASRM solid fuel were examined in the FEIS. As discussed in

the FEIS, the presence of voids in the cured rocket motor propellant could lead to case

rupture during static testing. Case rupture may also occur as the result of structural flaws

in the case, including the insulation, seals, adhesives, or other case materials. In addition

to the health and safety impacts due to an explosive case rupture, the FEIS addressed the air

impacts resulting from uncontrolled burning of propellant that may be thrown onto the

ground. In order to address concerns regarding the exhaust plume behavior and air
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concentrations specific to a case-rupture accident, the emissions and dispersion were

modeled according to the methodology described in Section 4.2.1. This section summarizes

the human health effects of case-rupture emissions.

5.6.2 MODELING

The exhaust emissions and plume behavior during a case-rupture accident were modeled

according to the protocol developed in Section 4.2. A case rupture of a 1.206-million-pound

fuel segment was presumed to occur during static testing and to last for 300 seconds. This

time duration was obtained from data provided in the Final Environmental Impact

Statement for the Space Shuttle Solid Rocket Motor Program at Thiokol-Promontory, Utah

(NASA 1977). Under the case-rupture scenario, the solid fuel would continue to burn unta3

all the fuel was consumed. The temperature of the exhaust emissions would be the same as

under normal testing conditions (6,000°F); however, the exhaust would not be thrust out

the nozzle at high velocities. Much of the exhaust would be emitted from the point of

rupture and from any fuel spilled onto the ground.

The results of the PCAD modeling indicate that the extremely hot exhaust plume will

buoyantly rise to a final centerline elevation of 10,000 feet. This is approximately 3,000 feet

lower than the final elevation of the exhaust plume from normal static testing (Section

4.2.2). PCAD also predicted that the radius of the plume would be about 8,000 feet. The

composition of the exhaust would be the same as during normal static testing.

The PCAD results were used as inputs to the INPUFF 2.3 dispersion model to calculate the

ground-level concentrations. The modeling results predicted a maximum 24-hour HCI

concentration of 0.013 mg/m 3 at a distance of 2.5 miles from the test stand. This is

approximately 5 times less than the 24-hour HCI standard. The concentrations of

aluminum oxide and aluminum chlorides following case rupture would also be below

routine regulatory guidelines.

5.6.3 HUMAN HEALTH EFFECTS

The human health effects to SSC workers within a 2.5-mne radius of the case-rupture

accident would be sim_ar to those discussed in the previous sections. The ground-level

concentrations would increase slightly but would still be far below all regulatory levels

and, therefore, no adverse effects would be anticipated.
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8.0 AGENCY CONSULTATION

Table 8-1 summarizes government agencies that were consulted in the preparation of the

SFEIS.

Telephone conversations or visits with some of the individuals listed in Table 8-1 may

also be cited in the main body of the text. References for those citations are provided in

Section 6.0.

8-1



A

_D

-I
e-
°_

t-
o
o
v

t-
O

°_

m
ele
1

-i

,-
0
0

u
C
0

0
1

,D
m
I--

if)
e-
0

0

e-
.9
a_
o
o
_.J

>,
o
c-
a_

E

z

G

•_ E _

•-_ _ -" =E _o__--- _ 8 -= -

._._. r
_._._ _-- .___ z, >_ _ _ E•_ ® o°-_o

._=-- (;_ _ _ O_ "_ '_" _ _'*,,,_ _"6_ _= _,-_ 0 _'° _

O_

(D

u_ -- 09

g e _

__ ._ ._o°° ._
o < < _o _ _ _.o ,_

u_
._ _ _o _ _ _,', z

-

8-2



"0
4)
:3
e-

0m

e-
o
u

c
o

o_

al

e-
0
(.1
>,
r.)
c
4)

<

q)
E

.a
m

I--

c-
o

,,m,

a_
4-,

(n
c
o

o

if)

m
o
o
--4

>.,
0
C:

.<

E
m

Z

i i0_ (" ._

- _ g_ _._
," ._ .-

•._ _'R "_ ®

_O

,,,g

_ ._

• _

o . _ _ -_ <C
U)
,<
Z

_ _.-_ _ .

8-3





9.0 DISTRIBUTION LIST

FEDERAL AGENCIES

Council on Environmental Quality

Tennessee Valley Authority, W.F. Willis, Director

U.S. Army Corps of Engineers, Mobile, AL District

U.S. Army Corps of Engineers, Vicksburg, MS District

U.S. Army Corps of Engineers, Washington, DC District

U.S. Department of Agriculture

U.S. Department of the Air Force

U.S. Department of the Army

U.S. Department of Commerce

Office of Policy and Planning

National Marine Fisheries Service

Economic Development Administration

U.S. Department of Defense

U.S. Department of the Interior

U.S. Environmental Protection Agency

ALABAMA

Alabama Department of Environmental Management

Colbert County Commission, Charles Thompson, Chairman

Lauderdale County Commission, William B. Hanbery, Chairman

Mayor of Florence, AL, Eddie Frost

Mayor of Muscle Shoals, AL Charles D. Lawler

Mayor of Sheffield, AL Renny Breaseale

Mayor of Tuscumbia, AL, Ray Calhoon

Placed for Reference at:

Cherokee Public Library

Florence/Lauderdale Public Library

Helen Kellar Public Library

Killen Public Library

Leighton Public Library

Marshall Space Hight Center Library

Muscle Shoals Public Library

Red Bay Public Library

Rogersville Public IAbrary

Sheffield Public Library

Tuscumbia Public Library

9-1



FLORIDA

KSC/Environmental Officer, James Sullivan

Placed for Reference at:

Kennedy Space Center Library

GEORGIA

Environmental Health Scientist, Atlanta

LOUISIANA

Audubon Society

Department of Development of St. Tammany Parish
Louisiana Department of Environmental Quality
Louisiana Department of Natural Resources
Louisiana Department of Transportation and Development

Louisiana Department of Urban and Community Affairs
Louisiana Department of Wildlife and Fisheries

Louisiana State Planning Office

Mayor of Bogalusa, LA, Toye Taylor
Mayor of Covington, LA, Ernest J. Cooper
Mayor of Pearl River, I.A, Janice McQueen
Mayor of Slidell, LA, Salvatore Caruso

Member of the LA House of Representatives, ILH. Strain

Member of the Louisiana State Senate, Gerry Hinton

Office of the Governor of LA, Buddy Roemer
Slidell Chamber of Commerce

Sierra Club

St. Tammany Parish Police Jury

Placed for Reference at:

City of New Orleans Public Library

St. Tammany Parish Library of Covington
St. Tammany Parish Library of Pead River

9-2



St. Tammany Parish Library of Slidell

University of New Orleans Library

Washington Parish Library, Bogalusa Branch

MISSISSIPPI

Chambers of Commerce

Hancock County Chamber

Mississippi Gulf Coast Chamber

North Pearl River County Chamber

Picayune Chamber

Citizens for a Healthy Environment

Crosby Arboretum

Department of Archives and History

Department of Economic Development

Department of Energy and Transportation

Department of Wildlife Commission

Forestry Commission

Gulf Coast Regional Planning Commission

Hancock County Board of Supervisors

Hancock County Chancery Clerk, E. Michael Necaise

Hancock County Circuit Clerk, Pamela T. Metzler

Hancock County Emergency Response Coordinator, Robert Boudin

Hancock County Port & Harbor Commission, Buz Olsen

Harrison County Board of Supervisors

Iuka Public Works Department

Mayor of Bay St. Louis, MS, Eddie Favre

Mayor of Biloxi, MS, Pete Halat

Mayor of Corinth, MS, Jack Holt

Mayor of Gulfport, MS, Ken Combs

Mayor of Iuka, MS, John H. Biggs

Mayor of Long Beach, MS, Glen Rishel

Mayor of Pass Christian, MS, Theodore Lawyer

Mayor of Hcayune, MS, Woody Spiers

Mayor of Poplarville, MS, James Barnes

Mayor of Waveland, MS, John Longo

Members of the Mississippi House of Representatives

J.P. Compretta

Ezell Lee

Members of the Mississippi Senate

Victor Franckiewicz

Margaret Tate

9-3



Mississippi Army Ammunition Plant

Mismssippi Bureau of Marine Resources

Mismssippi Bureau of Pollution Control

Mississippi Department of Environmental Quality

Mismssippi Emergency Management Agency

Mississippi Department of Natural Resources

Mississippi Governor's Office of Policy and Planning

Mississippi Research and Development Center

Mismssippi Wildlife Federation

Northeast Mississippi Planning and Development District

Office of Federal and State Programs

Office of the Governor of Mississippi, Ray Mabus

Office of the Lieutenant Governor of Mississippi, Brad Dye

Pearl River County Board of Supervisors

Pearl River County Chancery Clerk, D.R. Davis

Pearl River County Circuit Clerk, Peggy Staten

Picayune Ministerial Association

Sierra Club

State of Mississippi Clearinghouse for Federal Programs

Three Rivers Planning and Development District

Tishomingo County Board of Supervisors, D.W. McKee, President

Tishomingo County Development Foundation, Mack L. Wadkins

Tishomingo County Planning Commission

Tombigbee Water Management District

Wildlife Rehabilitation and Nature Preservation Society

Yellow Creek State Inland Port Authority

Placed for Reference at:

City of Biloxi Public Library

City of Gulfport Public Library

City of Long Beach Public Library

Corinth Public Library

George E. Allen Library

Hancock County Library

Itawamba Community College Library

Iuka Public Library

Jackson State University Library

Jefferson Davis Campus Library

9-4



Kiln Public Library
Lee County Library

Margaret Reed Crosby Memorial Library

Marshall County Library

Matthew F. Maury Oceanograhic Library

Mississippi State University Library

Pass Christian Public Library

Pearl River Community College L_rary

Poplarville Public Library

Ripley Public Library

Stennis Space Center Library

University of Mississippi Library

University of Southern Mississippi Library

Waveland Public Library

William Carey College Library

TENNESSEE

Bureau of Environment

Department of Economic and Community Development

Department of Transportation

Division of Radiological Health

Division of Water Pollution Control

Environmental Policy Group

State Planning Office

Mayor of Adamsville, TN, Harry Boosey

Mayor of Savannah, TN, Randy Rinks

Mayor of Selmer, TN, Leo Tull

Placed for Reference at:

Adamsville Public Library

Hardin County Library

Irving Meek Jr. Library

McConnico Memorial Library

Selmer Public Library

9-5





APPENDIX A

Wetland Mitigation Report





WETLAND MITIGATION PLAN

FOR

NASA ASRM STATIC TEST FACILITY

STENNIS SPACE CENTER

MISSISSIPPI

Excerpts from 404 Permit Application submitted to the

Vicksburg District, U.S. Army Corps of Engineers,
May 9, 1990



EXECUTIVE SUMMARY

This mitigation plan addresses the wetland impacts of the

proposed Advanced Solid Rocket Motor (ASRM) Static Test Facility

at Stennis Space Center (SSC) in Hancock County, Mississippi. The

objective of the mitigation plan is to reduce impacts by 1)

avoiding wetlands through an alternatives analysis for site

selection, 2) minimizing impacts by redesign of project facilities

and implementation of appropriate construction techniques, 3)

reducing impacts during the life of the project through maintenance

operations, and 4) compensating for unavoidable impacts by

replacing or providing substitute wetland resources. The approach

taken in developing this plan was: inspect sites to be impacted by
ASRM facilities proposed, assess functional values of wetlands to

be filled (primary impact), and outline mitigation measures to meet

the expected loss of wetland functions.

Pine and bottomland hardwoods are the two principal forest

cover types in the proposed ASRM site. Pine plantation forestry

is the present land use of the vegetated portions of the proposed
ASRM site; consequently, silvicultural practices have had a

significant influence on species composition and surface drainage.

Extensive ditches remove surface water rapidly and drain the land

for improved pine growth. Pine is additionally favored by

planting. Also, the bottomland hardwood drainage swales are much
narrower and reduced in size from natural conditions because of

pine planting.

The principal values of the wetlands impacted (filled) by the
ASRM infrastructure are biotic and hydrologic in character. The

primary biological function of the pine flatwood is a wildlife

habitat. However, forest management has converted what appears to

have been a hardwood or hardwood-pine habitat into monotypic pine.
An additional habitat function found in the pine flatwood forest

is the support of pitcher plant bogs. These bogs are unique

habitats that have also been adversely impacted by forest

management (ditching and overplanting of pine). Similarly, the
planting of pine in swales has degraded the bottomland hardwood

habitat. The result of pine plantation management has been to

impair the wildlife function by reducing hardwood (or mixed
hardwood-pine) forests.

The principal hydrologic functions of the impacted areas are
flood storage and desynchronization of storm flow. The ASRMStatic

Test Facility is to be located in the headwaters of the Jourdan

River and Pearl River watersheds. The microtopography results in

many storage depressions. Detained runoff provides desynchronous
stormflow, as well as subsequent infiltration and subsurface flow

to augment stream baseflows. At present, the ubiquitous drainage

ditches in the proposed ASRM site reduce both storage and flow
desynchronization.
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Once the SSC was selected as the site for static test firing

of the motor, various sites within the SSC Fee Area were evaluated.
In NASA's evaluation of the proposed site, three criteria required

the site to be relocated: the unnecessary impact on the bottomland

hardwood wetlands of Lion Branch, the inefficient use of the Fee

Area property, and the excessive length of the transport road.

Quantity/distance requirements were also determined for ASRM
facilities. Overall, SSC Facility Master Plan guidelines

established specific site zones for hazard testing in order to

provide worker safety. These constraints limited the location of
the ASRM Static Test Facility to the eastern portion of the Fee

Area.

The parking lots at the individual ASRM facilities have been

redesigned from the original size to provide only the minimum

number of spaces required during normal operations. Finish grade
elevations on roadways have been set as low as practicable to

insure the minimum impact on wetland areas, while maintaining

adequate safety and drainage design requirements. Although the
Test Stand location is set due to safety and SSC Facility Master

Plan guidelines, other facilities such as the Test Control Center,

Engineering Operations Building and the Equipment Building have
been located to minimize wetland disturbances.

Compensation for the 68.4 acres of fill will take three forms:

1) restoration of the hydrologic functions by filling ditches in
the flatwoods and building low berms across selected drainage

swales; 2) augmentation of bottomland hardwood forest cover for
wildlife habitat in the flatwoods by discontinuing pine plantation

management; and 3) enhancement of the unique pitcher plant bog

habitat by controlled burning in selected areas. Each of these
items can be accomplished in the vicinity of the ASRM Static Test

Facility.
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I. WETLAND FUNCTIONS AND MITIGATION GUIDELINES

Forested wetlands of the southeast provide important functions
that include:

o Biotic values, such as biological diversity and

uniqueness, food chain support, and wildlife habitat;

o Hydrologic values, such as flood abatement and control (by

storage and desynchronization of flow), groundwater recharge,
improved water quality, and contribution to base flow;

o Economic values, such as timber and crawfish production;
and

o Socio-cultural values, such as aesthetics, education, and
recreation.

These functions are of public value and necessitate: 1) avoiding

wetlands through an alternatives analysis for site selection, 2)

minimizing impacts by redesign of project facilities and

implementation of appropriate construction techniques, 3) reducing

impacts during the life of the project through maintenance

operations, and 4) compensating for unavoidable impacts by
replacing or providing substitute wetland resources.

As a practical matter, opportunities for replacement of wetland

functions are unique to each project. Successful wetland

compensation requires a plan that recognizes the ecology and land

use of the project area. Compensation for the loss of wetland

functions, in the case of this project area, is to be accomplished

by restoration of degraded natural wetland and enhancement of the

wetland functions of existing natural wetland. Creation of wetland

from upland, a third possible form of compensation, is considered

the least desirable option due to the large amount of

jurisdictional wetland in the project vicinity. Thus uplands,

rather than wetlands, are the locally scarce wildlife habitat. Two

guidelines for wetland compensation were followed:

o adjacency - the remedial activity should take place close to

the impact, ideally in the same wetland or at least in the

same drainage basin; and

o replacement in kind - the wetland functions replaced should
be similar to those lost.
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Physioaramhv

The majority of the proposed ASRM Static Test Facility (See

Figure 1) lies along the western edge of the Jourdan River

watershed. Total wetlands impact from the ASRM infrastructure is

summarized in Table 1. Standby Road follows an east-west drainage
divide that separates intermittent streams that flow southeast to

Devil's Swamp, from those streuns (Lion Branch, Double Bay, Wolf

Branch) that flow east to Catahoula Creek. Intermittent drainages
and ditches south of Standby Road and west of Ruffin Road are part

of the Pearl River drainage system. The topography is nearly level
to gently sloping, and the landscape consists of broad, wet flats

and drainageways, with low upland ridges. Typically, soils are

poorly or somewhat poorly drained (Smith et al. 1981).

Flora Description

Pine and bottomland hardwoods are the two principal forest

cover types in the ASRM site (Esher and Bradshaw 1988). The pine

forest occurs on the broad wet flats, and is referred to as pine

flatwood. Slash pine (Pinus elliottii) dominates the community,

with hardwood species such as pond cypress (Taxodium ascendens),

tupelo (Nyssa sylvatica sylvatica), sweet bay (Magnolia

virginiana), red maple (Acer rubrum), red bay (Persea borbonia),
and oak (Quercus spp.) occurring as individuals or small isolated

stands. The bottomland hardwood forest occurs along intermittent
drainages. Its dominant tree species are mostly the same as those

listed above, but in different and varying proportions.

Presently, pine plantation forestry is the land use of the

proposed ASRM Static Test Facility site and the surrounding
200-square-mile Buffer Zone. Except for the bottomland forest

along Lion and Wolf branches and south near the barge canal,
commercial silvicultural practices have had a significant influence

on species composition and surface drainage in the proposed ASRM

site. Extensive ditches remove surface water rapidly and drain the

land for improved pine growth. Pine reproduction is favored by

planting, and hardwoods are eliminated by control burning and

mechanical site preparation. Most of the flatwoods are in

monotypic pine plantations; the bottomland hardwood drainage swales
are much narrower and reduced in size from natural conditions

because of pine planting.

A unique pitcher plant (Sarracenia) bog vegetation community
is disappearing regionally from the flatwoods largely as a result

of commercial plantation forestry. Several species of

insectivorous plants are found in these open, nutrient-poor, wet

sites in the flatwood forest. Maintaining these openings depends

on frequent fires hot enough to kill competing shrubs and pine,

but not so hot as to injure roots (Folkert 1982). Because of

A-5



their relatively small size and scattered occurrence in the

flatwoods, the bogs are often planted in pine and become part of

the plantation. The construction of ditches to improve pine growth

also adversely alters the soil moisture regime required by the bog

flora. (See Attachment A-I., Floristic Analyses.)

Fauna DescriDtlon

Terrestrial fauna primarily dependent on bottomland hardwoods

include wild turkey (Meleagris gallopavo), gray and fox squirrels

(Sciurus spp.), gray fox (Urocyon cinereoargenteus), and raccoon

(Procyon lotor). These and many other species need mast for

subsistence at least seasonally, or the cavities of old trees in

which to shelter and nest. Associated with them are others, like

the striped skunk (Mephitis mephitis), with a small home range and
a daily dependence on surface water. In most of the area's hardwood

habitat, however, there is insufficient surface water to attract

or support wood duck (Aix sponsa), beaver (Castor canadensis), or

muskrat (Ondatra zibethicus). Fish occur only in the permanent

water of the biggest streams and ditches. From these, crawfish
extend their foraging some distance up into the pine flatwoods.

Management of the pine flatwoods partly imitates the natural

processes (wind, fire) that periodically are used to set back the

natural forest succession. Openings are created now in a more

orderly fashion by roads, thinnings, and small clear-cuts, but the

effect is much the same. Among the better-known game species in

need of low food and cover are rabbits (Sylvilagus spp.), bobwhite

quail (Colinus virginianus), and white-tailed deer (Odocoileus

virginianus). However, because the pine forest is kept at a

relatively early stage of ecological succession, the diversity

associated with natural clearings in a mixed pine-hardwoods

community of old-growth trees is never attained. (See Attachment
A-II., Wildlife Habitat Evaluation.)
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TABLE I. WETLAND IMPACTS OF THE ASRM INFRASTRUCTURE.

FACILITY

ACREAGE OF ACREAGE OF ACREAGE

CLEARING ACREAGE IMPERVIOUS OTHER

& GRUBBING OF FILL SURFACE IMPACTS

(cut)

FILL

QUANTITIES

(yds v)

Engineering 4.6 2.1 1.4 --

Operations

Building

Test Control 3.6 2.0 1.3 --

Center

Equipment 24.9 12.8 5.4 -- •

Storage Building
and Test Stand

Area

Deflection Ramp 37.9 23.6 5.5 5.0

Test Range 145 ......

Dock Area 6.1 3.5 1.4 --

Roadways Total

Main Line 35.2 8.4 9.3 7.1

Lateral Access 34.4 9.7 7.6 0.5

Transporter 15.8 6.3 1.7 --

Power Line 4.0

Right-of-Way

Total 311.5 68.4 33.6 12.6

15,700

15,600

86,818

1,060,800

ou

30,650

20,925

17,204

30,071

1,277,768
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Functional Assessment

The principal values of the wetlands impacted by the ASRM
infrastructure are biotic and hydrologic in character. The
wetlands rate low for socio-cultural values due to restricted

access, lack of navigable water, restrictions on hunting, and

dominance of the pine plantation. Economic values are principally

those of pine plantation forestry. Such forestry is ubiquitous in

the region andthe acreage removed from production would be minimal

in a regional context.

The primary biological function of the pine flatwood is as

wildlife habitat. However, forest management has converted what

appears to be a previous hardwood or hardwood-pine habitat into

monotypic pine. This judgement is based on the presence of

hardwood regeneration beneath the pine canopy. An additional
habitat function found in the pine flatwood forest is the support

of pitcher plant bogs (Esher and Bradshaw 1988). These bogs are

unique habitats (Folkerts 1982) that have been adversely impacted

by forestry management, both by ditching and over-planting of pine.

Similarly, the planting of pine in swales has degraded the
bottomland hardwood habitat. Wetland hardwood habitats are a

declining resource in the southeastern United States (Mitsch and
Gosselink 1986), with the consequence of increased impact on

wildlife species dependent on hardwood habitat. The result of pine

plantation management has been to impair the wildlife function by

reducing hardwood (or mixed hardwood-pine) forests. The wildlife
value of hardwood wetland is well documented (Wharton et al. 1982,

Brinson et al. 1981, Klimas et al. 1981). In particular, the

wetland zone most easily supplanted by pine plantation, namely that

which borders true upland, has been considered the most valuable

as a grazing-foraging system for animals (Wharton et al. 1982).
It is in this zone that production of nuts (e.g., acorns) and

fruits, berries and seeds is optimal for many preferred wildlife

foods. This marginal wetland zone was formerly of much greater

ecological importance in the region (Johnson 1987), as well as in
the ASRM site. The opportunity for its eventual enhancement as

part of ASRMproject mitigation is therefore commensurately great.

The principal hydrologic functions of the impacted areas are

flood storage and desynchronization of storm flow. The proposed
ASRM Static Test Facility is located in the headwaters of the
Jourdan River and Pearl River watersheds. The microtopography is

undulating, resulting in many storage depressions. Detained runoff

provides desynchronous stormflow, as well as subsequent
infiltration and subsurface flow to augment aquifer supplies. At

present, the ubiquitous drainage ditches at the ASRM site reduce

both storage and flow desynchronization.
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MITIGATION ACTIQ_S

A.

The ASRM Program represents a multifaceted action including
the design, construction and operation of new facilities for the

manufacturing and testing of the booster engines for the space

shuttle. Various sites through the country were evaluated.

Overall site selection was based on environmental and programmatic

considerations following federal guidelines including NEPA and the

preparation of a programmatic environmental impact statement (NASA

1989). A Record of Decision was signed on April 17, 1989. The

Tennessee Valley Authority's Yellow Creek facility, near Iuka,

Mississippi has been selected for the manufacturing of the new

booster motors. The SSC has been selected for static test firing
of the motors.

Once SSC was selected as the site for static test firing of
the motors, various sites within the SSC Fee Area were evaluated.

Site selection criteria included transportation considerations,

safety considerations, property limitations, and environmental

effects. The selection of the site was dependent on water access

in that the large motors would be transported by barge from the

manufacturing facility in Yellow Creek. The program has gone
through three iterations to arrive at the final site. The first

site was elected by the Contractor (Lockheed/Aerojet) in the
proposal stage of the program procurement. After the selection of

the successful proposal, the Contractor submitted his site

selection to NASA along with 90% site design drawings. In NASA's

evaluation of the proposed site, three areas of concern required
the site to be relocated. The areas of concern included the

unnecessary impact to the bottomland hardwood wetlands of Lion and

Wolf Branches, the inefficient use of Fee Area property, and the

excessive length of the heavy-duty transport road. In response to

those concerns, NASA suggested the second site, which minimized

these concerns. The third site was an agreement between NASA and

the Contractor after addressing environmental concerns.

The site selected meets the following criteria: minimizes

impact to Lion and Wolf Branches, does not impact any existing or

known future program plans, maximizes required land use to provide
safe distance area, minimizes heavy-duty transport road and its

effect upon wetlands, and allows for the maximum use of existing

utility corridors and road beds. Overall SSC facility master plan

also establishes specific site zones for hazard testing guidelines
in order to provide worker safety. Numerous meetings with the US

Army Corps of Engineers and other agencies governing wetlands
permitting provided information which was utilized in choosing the

final site. This site reflects the minimum possible physical and

functional impact to wetlands at SSC.
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B. Minimization

The buildings for the individual ASRM facilities have been
located to minimize the impact to wetland areas. Placement of the

individual buildings were as close to existing roadways as possible
to insure that a minimum amount of roadway was needed to access the

building during the course of normal operations. Parking areas

around the buildings were kept to the minimum number of spaces

needed by support personnel for the safe testing and operation of

the facility during a test period. The original number of parking

spaces provided at the Engineering Operations Building was 100

spaces; this number was reduced to 92 resulting in a savings of 8

parking spaces. The original number of parking spaces provided at
the Test Control Center was 75 spaces; this number was reduced to

60 resulting in a savings of 15 parking spaces. The parkingareas
around the Test Control Center and the Engineering Operations

Building were thus reduced by a total of 23 parking spaces.

Finish grading elevations on roadways have been set as low as

practical to insure the minimum impact to wetland areas, while

maintaining adequate safety and drainage design requirements

anticipated over the life of the facility. Original concepts

established the top of pavement elevation at 30 feet along the
lateral access road, and pavement elevations of 30 to 36 feet along

Mainline road. The Transporter Road was level, at an elevation of

26 feet, the entire length of roadway. The redesigned roadways were

lowered approximately 1 foot to as much as 4 feet, to allow them
to follow the existing topography, thereby reducing the amount of

fill and significantly reducing the amount of wetland impact.

Minimum roadway and shoulder widths are being used, consistent with

the safe operation of the type of vehicles anticipated. The lateral
access road which services the Test Stand Area was initially

located approximately 400 feet west of the Test Stand Area. After

further study of the affected upland and wetland locations, this
road was moved to utilize as much of the existing roadways and

uplands as possible.

The original proposed location of the Test Stand was rejected

due to the wetland impacts this location would have on Lion Branch.

A second location was rejected because the quantity/distance (QD)

interact distance would encroach over the Fee Boundary and into the
Buffer Zone which was a violation of SSC Facility Master Plan.

Roadway alternate number 1 was the original route proposed

but was rejected for two reasons. Number one was the lack of

upland located along this route which would impact a large amount
of wetlands. Number two was for quicker access to the Test Stand,

Test Stand facilities, Equipment Storage Building or the Dock Area

case of emergencies. Roadway alternate number 2 was rejected due
to the amount of fill which would be required to cross the various
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drainage depressions located along this access. Combined with the

lack of existing roadways, which the proposed lateral access road

utilizes, the overall fill within wetlands makes this alternate

unacceptable. Other alternatives were investigated, such as
raising the Test Stand, but were rejected due to the adverse

impacts these alternatives would have on the wetlands.

Along with precautions taken during construction such as the

use of laydown areas and erosion controls, these actions will

insure the minimum amount of wetland disturbance required for

construction of the ASRM Static Test Facility.

C. Maintenance

In the general way described elsewhere creation of a large

opening in the forest (the Test Range) would offer new habitat for

those plants and animals requiring it, and habitat enhance- ment

for those capable of exploiting it periodically. Although these

organisms would benefit from such an opening even if it were

managed with no consideration for their welfare, its effectiveness

as wildlife habitat could be increased with relatively little

additional cost. For instance, giving the test range scalloped

rather than straight edges would add length to the productive

field-forest interface. Burning or cutting the field selectively
to leave isolated clusters of relatively mature growth (e.g. briar

patches with an occasional tall shrub) would augment the cover

needed by many small animals and provide lookout, hunting, or

singing perches for others. The edge itself should provide a

shrubby transition zone of 50 to 100 feet between the field and

forest proper. In all cases, native species will be favored over
exotics.

The area around the Deflector Ramp will be designed so that

all rainfall that strikes the Deflector Ramp will be collected to

help maintain water quality. This collected rainfall will then

flow through grasslined channels at a very low velocity (e.g. less

than 3 feet per second). The grass lining and the slow velocity
will act as a filter. The water will be collected in a containment

pond. This containment system will be designed to allow settlement

of waterborne solids that may remain after the grass-lined

channels. The containment system will be sized to allow the first

3.8 inches of rainfall to be collected. This quantity of rainfall

represents the 1-hour, 25-year event. The pond will be designed
to allow any rainfall greater than 3.8 inches to bypass the

containment system by overtopping the channels leading to the

containment area. An ongoing monitoring of the depth of

accumulated sediment will be made quarterly. When the depth of the

accumulated sediment equals one-half the depth of the containment

pond, the sediment will be removed and disposed of by placing in

an existing spoil area.
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D. CQmDensation

Compensation for the 68.4 acres of fill will take three forms:

o restoration of the hydrologic functions by filling ditches in

the flatwoods, and creation of short berms across drainage

swales;

o restoration of bottomland hardwood forest cover (for wildlife

habitat) to the flatwoods by discontinuing pine plantation

management; and

o enhancement of the unique pitcher plant bog habitat by

discontinuing pine plantation management.

Each of these items can be accomplished in the vicinity of the ASRM

Static Test Facility and the Jourdan River and Pearl River

watersheds.

Reversing the influence of pine plantation forest management
on the flatwoods, will result in succession to bottomland
hardwoods. The bottomland swales will expand in width. This will

be accomplished by filling in the drainage ditch system within the
ASRM site. One area identified for restoration is the area bounded

on the north by Standby Road, on the west by Mainline Road, on the

east by Ruffin Road and on the south by development. This flatwood

is presently a slash pine plantation with a hardwood component and

understorythat will naturally succeed to hardwoods. Allowing this
succession and increasing the wetlands of this site by filling the

drainage ditches will increase wildlife habitat diversity and food

supply.

In the bottomland drainage swales throughout the flatwoods,

berms will be constructed perpendicular to flow (Mitchell and

Newling 1986). These berms are to be 1 to 3 feet high and located

at the appropriate topography to form shallow pools in the spring

and following large storm events. Probable locations will be along

drainageways leading to Lion and Wolf Branches. These will work

in conjunction with the filling of ditches to mitigate for the loss
of flood storage and flow desynchronization. The final location

and pool acreage will be based on detailed topographic mapping.

Pine plantation forest management should be modified in the

vicinity of the pitcher plant bogs. These areas should be burned

frequently enough to kill the invading shrubs and maintain these

open and unique habitats. Fire management should be coordinated
with the SSC forest management plan (SEC, Inc. 1989). Harvesting
of mature trees can still occur on the flatwood and areas around

the pitcher plant bogs, provided no soil is eroded into the bogs.

Some large trees and snags should be left for wildlife food and
cover. Commercial forestry should be a secondary use of these
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areas. They should be managed for wildlife and botanical values;
pine planting and drainage ditching are to be abandoned.
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Attachment A-1

FLORISTIC ANALYSES

For each of the proposed areas of major direct impact the
vegetation was described within sample plots. For efficiency, the

widely used US Army Corps of Engineers method of nested circular

plots was employed: percent cover for each herb and seedling

species within a 5-foot radius, for each species of shrub, sapling

and liana within 15 feet, and basal area of each tree species

within 30 feet. With the exception of the Dock Area, each major

impact site was sampled with at least 5 of these circular plots,

thus providing a measure of frequency (spatial distribution) in

addition to cover. The Dock Area's configuration required plots

of irregular shape, with corresponding adjustments to plot size as

well. In each area of extensive and roughly equidimensional
impact, the five replicate plots were located in a "domino"

cluster, one at each cardinal point of the compass 100 feet from

the fifth and central plot. In the case of the Transporter Road,
with its linear impact across bottomland hardwood habitat, the five

replicates were strung out 275 feet apart along the axis of the

proposed alignment. At points of lesser impact elsewhere in the

proposed transport and utilities corridor, a single circular plot

was located: one at the lowest point of the proposed lateral access
road beside the pipeline, and one each at Lion Branch and Wolf

Branch where these are crossed by Mainline Road.
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Attachment A-II

WILDLIFE HABITAT EVALUAT_0N

The approach taken here to wildlife habitat evaluation steers

a middle course between the unsystematic generalizations born of

anecdote and inventory on the one hand, and on the other the

precise, exhaustive calculations of Habitat Suitability Indices for

selected individual species, as described in the US Fish and

Wildlife Service Habitat Evaluation Procedures (HEP) (USFWS 1980).

Normandeau Associates Inc. adopted the method described by the

USFWS in Flood et al. (1977), which assigns key game species to

ecologically similar groups sharing a reasonably predictable degree

of dependence on different habitats (forest, field, and river).

These groups thereby serve to indicate the overall capacity of each
study site to support a variety of typical fauna, on a scale of 1

(lowest capacity) to i0 (highest capacity). Habitat quality
comparisons may then be made among all study sites for the named

species groups (evaluation elements), and by extension for many
other species known to have similar affinities.

The advantage of this method is that habitat is evaluated for

many species of interest in a relatively brief time, which is

summarized by simple numbers for easy comparability. However,

grouping species disregards the fact that no two species have

exactly the same habitat needs and preferences. What is an optimal
habitat component for one species may not be so for another in the

sample group. The number assigned as a rank for this habitat

component necessarily takes both species into consideration, which

forces a compromise. The effect of habitat evaluation ranking by

species groups is therefore to diminish use of the extremes of the

scale. The overall ranking of each habitat type will consequently

center on the middle range of values (4.0-6.9) more often than may

be appropriate for any given species. Notwithstanding this

tendency, serviceable comparisons have still been made here among

the different sites, based on the relative ranking within the

somewhat reduced numerical range.
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For the purposes of this study, the evaluation elements (species

groups) have been defined as follows:

Forest Game: White-tailed deer

Wild turkey

Odocoileus virginianu

Meleagris gallopavo

Upland Game: Bobwhite quail
Eastern cottontail

rabbit

Colinus virginianus

Syvilagus floridanus

Tree squirrels: Eastern gray squirrel
Eastern fox squirrel

Sciurus carolinensis

Sciurus niger

Terrestrial Furbearers:

cinereoargenteus

Raccoon

Opossum

Striped skunk

Gray fox

Procyon lotor

Didephis marsupiali

Mephitis mephitis

Urocyon

Aquatic Furbearers:
Beaver

Muskrat

Castor canadensis

Ondatra zibethicus

Waterfowl: Wood Duck Air sponsa
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APPENDIX B

JUSTIFICATION FOR THE MIXING

USED IN INPUFF 2.3 DISPERSION

HEIGHT

MODELING

MIXING HEIGHTS

Definition: The mixing height is defined as the depth of the atmospheric mixing layer.

The mixing layer is the region of the lower atmosphere which is continually mizing
vertically due to turbulence. The turbulence is induced by winds, solar heating, and
roughness features on the Earth's surface (i.e., hills and mountains). Generally, as the sun
warms the air during the day, the mixing heights increase. Therefore, afternoon mixing

heights are generally higher than morning mixing heights.

Mixing heights may change from day to day depending upon the weather. A low-level
temperature inversion such as the inversions which exist over Los Angeles during the
summer, is an example of a low mixing height. Fair weather in southern Mississippi is
often characterized by vigorous vertical mixing creating high mixing heights.

The degree of dispersion of pollutants in the atmosphere is different for pollutants emitted

below the mixing height than it is for pollutants emitted above the mixing height. When
pollutants are emitted into the mixing layer (e.g., automobile exhaust and industrial stack
emissions), the atmospheric turbulence tends to disperse the pollutants throughout the

mixing layer. The low mixing height in Los Angeles during the summer traps the
pollutants near the ground and provides only a small volume for the pollutants to disperse
into. As a result, the pollutant concentrations in Los Angeles are high. When an inversion
does not exist over Los Angeles, the mixing height is much higher, the pollutants are

dispersed throughout a larger volume, and the air concentrations are lower.

The atmosphere above the mixing height is generally less turbulent and vertical mixing is
suppressed. When pollutants are emitted above the mixing height, they are slowly

dispersed and do not tend to mix with the air below. These pollutants tend to remain
above the mixing height and, therefore, the ground-level concentrations are lower than if

the pollutants were emitted below the mixing height.

MIXING HEIGHTS AND ASRM EXHAUST PLUME DISPERSION

The ASRM exhaust plume is predicted to rise to an elevation (plume center.ne) of 13,380
feet before it begins to disperse substantially. The plume is also predicted to expand into a

cloud which is approximately 3.8 miles in diameter. Since half of the plume will be below
the plume centerline elevation of 13,380 feet, the base of the plume m'll have an elevation of

roughly 3,000 feet. For low mixing heights (< 3000 feet), the plume will be entirely above

the mixing layer (Figure B-l). In such cases, since the vertical dispersion is slow above the

B-1



v

.1::

m

J=

C
I

)<
m

E
I

0
o
"0
C
m

C
0
m

U

"0
C

0
E

Q.

M

m
J=
X.
0

(/1
<

0

U
m

a
E
0

U

Q

3

B-2



mixing height, the plume will not mix substantially with the air near the ground and the

ground-level concentrations will be very low. For higher mixing heights (>3000 feet), part

of the plume may be below the mixing height and part of it above the mixing height

(Figure B-l). That part of the plume which is below the mixing height will be mixed with

air near the ground, affecting ground-level concentrations. However, the part of the plume

which remains above the mixing height will not mix with the air near the ground and

will not contribute to the ground-level concentrations. Therefore, for a given final plume

elevation, higher mixing heights will tend to increase ground-level concentrations and

lower mixing heights will tend to decrease the ground-level concentrations.

MIXING HEIGHTS USED FOR THE INPUFF 2.3

DISPERSION MODELING

The annual average afternoon mixing heights vary with location (Figure B-2). In

Mississippi, the mixing heights increase with distance inland. The annual average

morning and afternoon mixing heights for Jackson, MS; Burrwood, I.A; Lake Charles,

LA; and Brownsville, "IX are given in Table B-1. Jackson, MS is further north than Lake

Charles, LA and, therefore, has a higher mixing height.

The afternoon mixing height for Jackson, MS was used in the INPUFF 2.3 dispersion

modeling for two reasons. First, the predominant upper-level winds around Stennis Space

Center (SSC) blow from west to east or from southwest to northeast (Figure B-3).

Therefore, the plume will usually be blown towards areas of higher mixing heights.

Second, higher mixing heights produce higher ground-level concentrations than lower

mixing heights. Using the higher Jackson, MS mixing height, therefore, is a conservative

assumption.

SUMMARY

The Jackson, MS average afternoon mixing height of 4,261 feet is approximately 1,000 feet

higher than ,the predicted base of the exhaust plume when it has reached its final centedine

elevation. The dispersion model, therefore, predicts measurable ground-level concentra-

tions for the gases and part.ides in the plume. If the dispersion model were run with

mixing heights below 3,000 feet such as might be expected near the coast or in the morning,

the ground-level concentrations would be much lower and may be zero in some cases. For

low mixing heights, the plume would remain above the mixing layer and would not mix

appreciably with the air near the ground.

B-3



/

_cr) qllI

_0

-=o

I •

Q.C_

_g

mCC

O Ii

m _

,._o

,.I

,i..O
G) I I

_D
Ii

i

U.

B-4



Table B-1. Annual average morning and afternoon mixing heights.

Location

Morning Afternoon
Mixing Height Mixing Height

(feet) (feet)

Jackson, MS 1,235 4,621

Burrwood, LA 2,958 3,060

Lake Charles, LA 1,246 3,811

Brownsville, TX 1,971 4,146
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APPENDIX C

SAMPLE CALCULATION OF SURFACE WATER pH

RAINFALL DATA

Rainfall: 2 cm

Raincloud surface area: 124 sq km
Rainfall volume: 2.48 x 1(# liters

Rain pH: 2.9
Moles H÷/literrain:1.26x 10_

Moles H÷/rainevent:3.12x 106

SURFACE WATER DATA

(estimated for calculation purposes)

Surfacewaterdepth:15.2cm (6inches)

Surfacewater area: 124 sq km

Surfacewater volume: 1.9x 101°liters

SITE-SPECIFIC SURFACE WATER DATA

PARAMETERS/
PREDICTIONS

NORTHERN BRANCH
DEVILZ SWAMP

SAMPLE S1TE
EAST PEARL RIVER

SAMPLE SITE
GEO MEAN
ALL SITES

ALKALrmrz

Alkalinity

(mg CaCOa/L)

Moles H*/L

neutralized
at this alk.

Total moles H÷

neutralized
surface water

5 12 24.7

1.0xl_ 2.4x1_ 4.9xI_

1.9x l0s 4.6x 1(# 9.4x l0s

PH

pH (sampled)

Moles H'/L

Total moles H ÷

surface water

5.8 6.3 6.1

1.58xI_ 5.0xlff 7 7.9x1_

3._xl_ 9.50xi(# 1.50xI_

PREDICTIONS

Excess moles 1.22x l0s (no excess) (no excess)

H ÷not

neutralized

Final moles H÷/L 6.6 x lff s 5.0 x l(f 7.9 x lff 7

in surface water

after deposition

pH (predicted Case 2) 4.2 6.3 6.1
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SampleCalculations (Northernbranchof Devil'sSwampdatausedasexample)

• Rainfall Volume =

lkm2cmx lm x _-2x104km
100 cm 1,000 m

2 x 10"skm x 124 km 2x
I x 109m s 1,000L

X
Ikm s m 3

= 2.48x 10s Lrain

• Moles hydrogen ion/literrain=

pH = -log [H÷] [H÷] = antilog - pH

analog- 2.9 = 1.26 x 104 moles W/L rain

• Total moles hydrogen ion/rain event =

1.26 x 104 moles H÷/L x 2.48 x los L = 3.12 x los moles H* (rain event)

• Surfacewatervolume =

2.54cm I m I km km _ Ix l0sm s 1,000L6 inx x x x 124 x x
in 100 cm 1,000m ikm s m s

= 1.9x I0l° L

• Moles hydrogen ion/liter neutralized at alkalinity (5) =

5 mg CaCO s I g CaCO s I mole CaCO s
X X

L 1,000 mg 100 g CaCO 3

2 mole H* neut.
X

1 mole CaCO 3

= I x 104 moles H*/L neutralized at alk = 5

• Total moles hydrogen ion neutralizedsurfacewater =

I x 104 moles H*/L x 1.9x 101° L= 1.9x losmoles H÷ neutralized

G-2



Moleshydrogenion/liter insurfacewater-

pH- - log [H ÷] [H÷] - antilog - pU

antilog - 5.8 - 1.58 x 10 _ moles H÷/L sur_ce water

• Total moles hydrogen ion in surface water body -

1.58 x 10 _ moles H÷/L x 1.9 x 101° L - 3.00 x 10 _ moles H ÷surface water

Excess moles hydrogen ion not neutralized -

(3.12 x 104 moles H÷) - (1.9 x 106 moles H÷) - 122 x 106 moles H÷

(rain) (moles _ capable of (not neutralized)

bei_ neutralized by

surface water)

Final moles hydrogen ion in surface water/liter after deposition -

1.22 x l0 s moles H÷ + 3.00 x 104 moles H÷ - 1.25 x los moles H÷

(rain excess 1-1_) (surface water 1-1") (Total H*)

1.25 x los moles H÷

1.9 x I0 I° L
- 6.6 x 1_ s moles H*/L surface water

Final pH after deposition -

pH = - log [H ÷] [H÷] = 6.6 x I(Ys moles/L

pH = - log (6.6 x 165) = 4.18

G-3





APPENDIX D

Sample Calculation of Rainwater pH





APPENDIX D

SAMPLE CALCULATION OF RAINWATER PH

INTRODUCTION TO ACID RAIN

Acid rain is caused when certain kinds of chemicals caned acids dissolve in the rainwater.

Additionally, other chemicals, which react chemically with water to form acids, can
dissolve in the rain and cause it to be acidic. When an acid molecule dissolves in water,

one or more hydrogen atoms detach from the acid molecule and remain separated in the

water. These separated hydrogen atoms are caned hydrogen ions and are given the

symbol H+. The hydrogen ions in the rainwater are respons_le for the acidic properties
associated with acid rain, and the acidity of the rain is proportional to the concentration of
the hydrogen ions in the rainwater.

Acid rain scientists have adopted the chemists' system for expressing the acidity of water.
the pH scale. The pH scale descn'bes the concentration of hydrogen ions [H +] in the water.

Technically, pH is defined as the negative logarithm of the hydrogen ion concentration.
The scale is logarithmic, so each successive pH unit represents a 10-fold change in the

concentration of hydrogen ions. Doubling or halving the acidity, which means doubling
or halving the concentration of hydrogen ions, changes the pH by 0.3 units. Water pH
ranges from extremely alkaline (pH 14) to extremely acid (pH 0); the neutral point is pH 7.0.
All values lower than 7.0 are acidic; all above pH 7.0 are alkaline or basic. The lower the
pH, the greater the acidity.

Unpolluted precipitation is commonly assumed to have a pH value of approximately 5.6.
This mild acidity is caused by the presence of carbon dioxide in the atmosphere, dissolving
in the rainwater and forming carbonic acid (a common acid, caused by carbonation, that is
found in soft drinks as weU). Natural constituents such as ammonia, soil particles,
seaspray, sulphur dioxide, sulphate particles, and volcanic emissions of sulphur dioxide
and hydrogen sulphide can increase or decrease the pH of precipitation from 5.6. It is not
unusual for a rainwater pH value of between 4 and 5 to occur at remote locations such as
the middle of the Pacific Ocean, far removed from human interference (Hibbard 1982). The

greatest increase in rainwater acidity, however, is due to manmade pollution. Specifically,
the combustion of coal and other fossil fuels produces oxides of sulphur and nitrogen that
greatly affect rainwater acidity.

CALCULATION OF RAINWATER PH AT SSC UNDER THE

CASE 2 SCENARIO

Under the Case 2 scenario, the HC1 gas in the exhaust plume will dissolve into cloud water
droplets and subsequently be rained out. The cloud droplets wffl have natural and

manmade chemicals dissolved in them before the HC1 is added. The annual average pH of
the rain at SSC due to these natural and manmade chemicals is 4.5 (USGS 1989). Any
additional acids dissolved in the cloud droplets will increase the acidity (lower the pH).
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Since HC1 forms an add when dissolved in water, it will increase the hydrogen ion

concentration in the droplet, increasing the acidity (lowering the pH).

The acidity of the rain will be equal to the existing acidity from background sources plus

the acidity from the dissolved HCl. As an example, the pH of a rain occurring

immediately after testing (Table 4-5) is calculated below.

(I) Calculate the volume of rainwater

Volume (cubic meters) = rain depth (meters) x cloud area (square meters)

=> 2.0 x 106 m s = 0.02 m x 1.0 x 10s m 2

=> 2.0x 10s m 3= 2.0x I09 liters

Calculate moles of H+ from HCf

Moles H + = total mass of HCI (g)/36 (g/mole)

3_243,0,55 moles = 116,750,000 g/36 g/mole

Calculate concentration of H+ in rain due to HCI

Concentration H + = moles H+/rain volume

1.6 x 1_ s moles per liter = 3_243,055 moles/2.0 x 109 liters

Calculate the concentration of H+ due to background sources in the rain.

Concentration H + (moles per liter) = 10(-PH) => 3.16 x 10"Smoles per liter = 10(4.5)

(5) Calculate total H+ concentration

Total H+ concentration = concentration due to HC1 + concentration due to

background sources

=> 1.6x I0-3moles per liter= 1.6x I0_ moles per liter+ 3.16x I{Ys moles per liter

@ Calculatefinal pH of rain

pH = -log total H+ concentration

2.8 = -log 1.6 x I{Y3
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METEOROLOGICAL
PLUME

APPENDIX E

PRINCIPLES RELATED TO ASRM
BUOYANCY AND BEHAVIOR

TEST

INTRODUCTION

An ASRM will burn 1.206 million pounds of solid fuel in about two minutes. The
combustion process will produce an extremely hot exhaust plume (initially 6,O00_F) which
will rise to high altitudes before stabilizing and dispersing. Several questions have been

raised about the behavior of this rising plume in the humid southern Mississippi climate.
This section is designed to answer two of the questions on the plume behavior:. 1) what
effect the humid climate w_l have on the buoyant rise and dispersion of the plume; and
2) whether this rising plume will create a cumulus cloud and produce acid rain. Before
these questions can be adequately answered, some of the concepts used in the study of
meteorology must be examined. These questions require an understanding of a few basic
properties of gases and moisture in the atmosphere and the processes of cloud and rain
formation. The essential meteorological concepts that govern the plume behavior are:

• Concept 1: Pressure and Density in the Atmosphere

• Concept 2: Temperature in the Atmosphere

• Concept 3: Properties of Gases and Moisture in the Atmosphere

• Concept 4: The Rate of Temperature Change with Elevation for Saturated Air

• Concept 5: Cloud Formation

• Concept 6: Rain Formation

Each concept will be explained individually before bringing them together to answer the
questions on plume behavior.

CONCEPT 1: PRESSURE AND DENSITY IN THE ATMOSPHERE

The pressure and density of air are related to the elevation in the atmosphere. This
relationship between pressure, density, and altitude can be attributed to gravity. The force
of gravity draws all matter earthward, even the air, which is often thought of as having
almost no substance or weight. However, the molecules of nitrogen, oxygen, water vapor,
and the other gases in the atmosphere, like all matter, do have weight and are attracted
earthward by gravity. The air molecules in the air at sea-level, New Orleans for example,
are squeezed closely together under the weight of the molecules above them. When the air
molecules are tightly packed together we say that the air has a high density. The air in
higher elevations of the atmosphere, on the other hand, has very few molecules above it;
therefore, the molecules are loosely packed together. This air is less dense than the air at
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sea-levelandsowe sayit is thin. This is analogousto a heliumballoonwhich rises
becausehelium is lessdensethanair.

The atmosphericpressureof air at a point on the Earth's surface is the result of the we'tght
of the air molecules above being drawn gravitationally downward. At high elevations,
such as Mr. Everest, there are fewer air molecules overhead than there are above the air in

New Orleans. Therefore, the atmospheric pressure is lower on Mr. Everest than it is in New
Orleans. In other words, atmospheric pressure decreases with increasing elevation.

CONCEPT 2: TEMPERATURE IN THE ATMOSPHERE

The change in atmospheric pressure with altitude is important to understanding the

ASRM exhaust plume behavior, because the temperature of a gas is related to its pressure.
Gases in the atmosphere are considered idea/gases, because they behave very similarly to
the Ideal Gas Law. The gas law states that the temperature of air is proportional to its
pressure. This relationship is illustrated by the graph in F'tgure E-1. The graph shows that
when air r/ses in the atmosphere (i.e.,goes from higher pressure to lower pressure), the
temperature of the rising air decreases. For air that is not saturated with water vapor, the

rate of temperature decrease with altitude is about 5.3°F per 1,000-feet elevation. It is
important to note that air in the atmosphere is not continually rising or descending (i.e,
not changing its pressure) and, therefore, the actual temperature of the atmosphere may not
follow the graph in Figure E-11/. Also, the rate of temperature change with altitude is

different for rising air that is saturated with water vapor than it is for rising dry (no water
vapor) air. The temperature change with altitude of saturated air will be discussed later.

CONCEPT 3: PROPERTIES OF GASES AND MOISTURE

IN THE ATMOSPHERE

Whether moisture in the atmosphere is in the invisible gas form of water vapor, in
suspended liquid droplets or ice particles of a cloud, or as larger falling particles of
precipitation, it plays the leading role in almost all weather phenomena. Moisture in the

Earth's atmosphere commonly exists in three states: gas, liquid, and solid. In the gaseous
state, known as water vapor, the water molecules (H20) diffuse perfectly and freely among
the nitrogen, oxygen, and other gases in the atmosphereZ/. The liquid form of water is

most commonly found in the atmosphere as tiny droplets that make up a large portion of

1/

2/

The actual temperature in the atmosphere may increase with altitude (an inversion), have no
change of temperature with altitude, decrease with altitude, or be some combination of
increasing and decreasing.

Although we cannot see water vapor, we can feel its effects. When water vaporis present in large
proportions in the air in winter, heat is conducted from our bodies, and winds seem to chill us
to the marrow. In summer a high content of water vapor in the air slows evaporation or
perspiration from the skin, thus inhibiting body cooling, and we feel sticky, warm. and
uncomfortable.
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Figure E-1. The Ideal Gas Law states that the temperature of a gas is
proportional to its pressure. The rate of pressure change with altitude in the
Earth's atmosphere causes a rising volume of air to cool at a rate of 5.3°F every
1,000 feet of elevation. This graph shows the relationship between height and
temperature for a particular rising volume of dry air. This air begins at a
temperature of 70.6°F and cools to 65.3°F in the first 1,000 feet of rise. The air
cools another 5.3°F in the next 1,000 feet to 60°F. This rate of cooling with

height would continue were the air to keep rising.
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clouds and fog. Liquid water also occurs as rain. Water in the solid state is most

commonly found in the atmosphere as tiny hexagonal ice crystals high in the atmosphere.
Clouds formed in the subfreezing regions of the atmosphere are often composed of ice
crystals. Snow and hail are also solid forms of water in the atmosphere.

Moisture in the atmosphere may change back and forth between the gas, liquid, and solid
states. When moisture changes from the gas state to the liquid state, it is called
condensation. Moisture changing from liquid to gas is called evaporation. Liquid water
may change to a solid in the process known simply as freeaiq and water vapor may
change directly into crystalline ice by the process ofs@limatiom. The reverse process, that

of ice passing directly into water vapor, is also termed sublimation and is analogous to
evaporation.

Whenever moisture changes from one state to another, heat energy is gained or lost. These

processes are extremely important to understanding atmospheric phenomena. The process
of evaporation consists of the flight of the most energetic, fastest moving molecules from

the surface of the liquid into the air. When these molecules escape from the liquid, they
take their extra energy with them leaving behind slower moving, less energetic liquid

molecules. Since the energetic motions (speeds) of molecules in a liquid are related to the
temperature of the liquid, the removal of energy (also referred to as heat) by the evaporating
molecules lowers the temperature of the liquid. Consequently, evaporation is a cooling
process 1/. In the reverse process of condensation, the rapidly moving vapor molecules
transfer their energy (heat) to the liquid when they collide with the liquid surface. The

average energy of the liquid molecules increases, raising the temperature of the liquid.
Condensation is therefore a warming process. 21

Simnarly, heat is given up when liquid water freezes to a solid (ice). The heat o/fusion, as
this is called, is less than the heat transferred during condensation or evaporation.
Sublimation, however, requires large quantities of heat to be transferred when water

molecules change from the gas state directly to the solid state and vice versa. The heat

transfer is larger than in the other processes because the change is from highly energetic
and rapidly moving gas molecules to the very quiet repose of the molecules frozen

stationary in an ice crystal. Sublimation includes the heat transfer of condensation and

the heat of fusion combined. Sublimation of a solid to a gas requires heat energy to be
added to the stationary molecules in the ice crystal to give them enough energy to move
rapidly as a gas. Sublimation in both directions require the same heat transfer.

1/

2/

When perspiration evaporates from the skin, it cools the skin by removing heat energy in the
evaporating water molecules.

Water vapor condensing on the outside of a cold can of soda pop will quickly warm the soda due
to the heat transferred from the condensing molecules to the soft drink can.
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The water vapor content of the air is generally referred to as the humidity. Since the

absolute humidity of an air parcel I/will change if condensation occurs and removes water

vapor from the air parcel, meteorologists prefer to measure the moisture content of air using

other terms such as relative humidity. Before defining relative humidity, consider what

will happen to dry air in a sealed glass jar about half full of water left to stand without

any change in the temperature of the surroundings. Evaporation will cause water

molecules to leave the water surface and enter the air as vapor. At the same time, some of

the vapor molecules will collide with the liquid surface and condense back into liquid.

This means that the water molecules in the jar are continually going back and forth

between the vapor state and the liquid state. At the beginning of the experiment, the rate of

evaporation of water molecules will exceed the rate of condensation and a net amount of

evaporation will occur. After a time, the number of water molecules leaving the water

will be balanced by an equal number returning to the water surface from the vapor state.

There is no further increase in the water vapor content of the air and the air is said to be

saturated.

If the temperature in the jar were allowed to increase, however, additional evaporation

would take place until saturation is achieved again. This is because more water vapor can

exist in a volume of warm air than can exist in the same volume of cooler air.

The dosed jar experiment demonstrates that at a particular temperature, there is a limit to

how much water vapor can exist in a given volume. Furthermore, the maximum

amount of water vapor that can be held in a given volume depends upon the temperature

of the air in that space. A direct consequence of this relationship is that cooling a saturated

volume of air wnl cause condensation, because only a smaller quantity of water vapor can

exist in the volume at a lower temperature.

Relative humidity, therefore, is the ratio of the quantity of water vapor present in a volume

to the maximum quantity possible in that volume. Put more simply, the relative

humidity is the percentage of saturation. Relative humidity is given in percent, O_ being

absolutely dry air, and 100_ being completely saturated. In the closed jar experiment, the

relative humidity begins low and eventually reaches 10091;, or saturation. Quickly

increasing the temperature in the jar will raise the maximum quantity of water vapor

allowed in the volume. Raising the temperature will initially lower the relative

humidity of the air until evaporation has added water vapor to the air and the relative

humidity again reaches 100_. Cooling the air in the jar will cause condensation because

the relative humidity cannot exceed 100_ That is, at a lower temperature, a smaller

quantity of water vapor can exist in the volume and, therefore, some of the water vapor

must be removed by condensation. Notice that when the air is cooled and water vapor

condenses, the relative humidity does not change; it remains at 10096.

1/ An air parcel is a convenient method for describing a small volume of air which can move
about in the atmosphere. An air parcel has no physical boundaries, but is usually defined as a
volume of the atmosphere with horizontal dimensions of a few meters.
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CONCEPT 4: THE RATE OF TEMPERATURE CHANGE

WITH ELEVATION FOR SATURATED AIR

It was mentioned earlier that the rate of temperature decrease with altitude for a rising
parcel of dry air was about 5.3"F per 1,000 feet, but that the rate of temperature change was
different for a rising parcel of saturated air. For this discussion, consider a parcel of air at

100_ relative humidity near the ground. We now know that when this parcel of saturated

air moves upward in the atmosphere and the pressure drops, it causes the temperature to
drop. In order to keep the relative humidity from exceeding 100_, however, condensation

occurs and removes some of the water vapor from the air. Since condensation is a
warming process, heat is returned to the parcel of air when water vapor condenses out of it.
This means that the air parcel is partially rewarmed due to condensing water. Therefore,
the rate of temperature decrease with altitude for saturated air (about 32°F per 1,000 f_e0 is
less than the rate for dry air. In other words, if two parcels that are identical except that

one parcel is saturated and the other is dry are lifted 1,000 feet up in the atmosphere 11, the

dry parcel will be 5.3"F cooler than when it started, but the saturated parcel will only be
32°F cooler.

It is important to remember that lifting a parcel of air up in the atmosphere is not the only
mechanism for cooling the parcel. For a warm air parcel buoyantly rising through a cool
atmosphere, the temperature of the parcel will decrease due to mixing with the cooler air

around it as well as decreasing due to altitude. When these two cooling mechanisms are

combined, the rate of temperature decrease with altitude may be substantially larger than
either 5.3°F or 32°F per 1,000 feet.

CONCEPT 5: CLOUD FORMATION

Clouds are collections of tiny water droplets or ice crystals suspended in the air and are
formed by many different sets of atmospheric conditions. Their shape, size, and altitude

are often indicative of the atmospheric conditions that produced them. Clouds are formed

when water va_r condenses on tiny particles _-/forming tiny spheres of water or ice
(usually about 10 to 50 _rn in diameter). These cloud droplets and ice particles are so small
that they remain suspended in the atmosphere.

The following example illustrates the cloud formation process. An air parcel at an

elevation of 100 feet has a relative humidity of 75%. This air parcel is lifted in an updraft,
causing the temperature to drop and the relative humidity to increase. When the air parcel
gets to an altitude of 1,500 feet, the relative humidity reaches 100_. As the air parcel

1/

2/

Air parcels may be lifted in updrafts, or when air must flow over an obstruction such as a
mountain.

The tiny particles are called cloud condensation nuclei (CCN) and are everywhere in the
atmosphere.CCN aremade ofspecksofdust,seasalt,andotherchemicalcompounds.
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continues to rise in the updraft, the temperature continues to decrease, but the air parcel
cannot hold all of the water vapor that it could originally. Therefore, some of the water

vapor condenses onto the tiny particles in the air and cloud droplets are formed. The

collection of tiny droplets constitutes a cloud. If the temperature of the cloud were to drop
much below freezing (-33°F), the cloud droplets would freeze into ice crystals 1/. In a

subfreezing cloud, the water vapor may also sublimate onto particles and form ice crystals.

CONCEPT 6: RAIN FORMATION

The formation of a cloud by condensation and sublimation is the tirst step in producing
precipitation. However, merely forming a cloud does not water the earth, for the terminal

velocity of a cloud droplet with a radius of 10 gm is about one half an inch per second, at
this rate, it would take about 80 hours for the water to reach the ground from the average
cloud level, about 1.5 to 2 miles high. Furthermore, raindrops usually must fall through

layers of unsaturated air before reaching the ground. A 10 ttm cloud droplet would survive
through only a few feet in air with a relative humidity of 90_ before evaporating.
Therefore, the formation of rain involves processes which dramatically increase the size of
the drops.

Raindrops are formed in clouds by the frequent collisions of cloud droplets with one
another and by the rapid growth of ice crystals. In very warm climates such as the

tropics, entire clouds will have temperatures above freezing and no ice crystals will be

present. In these warm clouds, raindrops are formed by the collisions of mnlions of cloud
droplets to form a single raindrop 2/. Although warm clouds can produce copious
quantities of rain, the process of raindrop formation by droplet collision is fairly slow.
Estimates of the time required for a drop to grow to about 0.05 inches in diameter (a small
raindrop) by collision range from about 45 to 60 minutes for a typical cumulus cloud. This
means that a cloud must have a continual supply of saturated air and a constant updraft for
at least 45 minutes before the first raindrop can fall to the ground.

Raindrops are also formed when falling ice particles melt before they reach the ground.

This theory was developed in the early part of this century and is now believed to be the

main mechanism for rain formation in the mid-latitudes of the globe. An earlier
discussion mentioned that ice crystals may grow by sublimation when the cloud
temperature is below freezing (cold clouds). The rate of sublimation of water vapor onto ice

particles in clouds, however, is much greater than the rate of condensation. Therefore, an

ice crystal may grow into a small snowflake whne the liquid cloud droplets remain very
tiny. The small snowflake may then aggregate with other ice crystals to form a
precipitation-sized snow flake in about 30 to 40 minutes. As in the case of warm clouds,

1/

2/

Cloud droplets will remain as liquid droplets even under very cold conditions (down to about
-33°F3 is called a supercooled droplet. Many clouds consist entirely of supercooled droplets.

The average rain drop contains roughly one million times the quantity of water found in a
single cloud droplet.
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coldcloudsrequireacontinuoussupplyof saturatedair andaconstantupdraftfor atleast30
minutesbeforerain will fall. When the supply of saturated air ceases, raindrop formation
will stop and no precipitation will fall. Raining clouds may be thought of as rain

machines, requiring a conveyor belt carrying water vapor (saturated air in an updraft) to
feed them with the water to create the rain. If the conveyor belt stops, the cloud machine
may remain intact, but the production of rain will stop.

QUESTIONS CONCERNING METEOROLOGICAL EFFECTS

ON THE ASRM TEST PLUME

1) What effect will the humid climate in southern Mississippi have on the buoyant rise
and dispersion of the exhaust plume?

The ASRM exhaust plume rises from the ground to high elevations due to thermal
buoyancy. The hot exhaust plume is less dense than the ambient air and, therefore rises

(Concept 1). The combustion of the solid fuel will produce an exhaust plume with a high

percentage of water vapor by weight, about 6_ 1/, but will initially have a low relative
humidity due to its high temperature. The exhaust plume will rapidly cool as it rises in
elevation (Concept 2) and as it mixes with the much cooler ambient air. Since the exhaust

plume initially contains a large quantity of water vapor and since the ambient air in

southern Mississippi has a high humidity, the plume will soon reach the point where it

becomes saturated (Concept 3). At this point the saturated plume will still be very hot and

will thus continue to rise. After the plume becomes saturated, water vapor will begin
condensing (Concept 4) which will add additional heat to the plume. The rate that the
plume cools with elevation after it becomes saturated will be slower than before it became

saturated (Concept 5). When a rising plume cools to the temperature and density of the

surrounding air, it will stabilize and stop rising. A plume which is initially warmer than
its surroundings, will rise until its density has decreased to that of the surrounding air.

Since the saturated plume will remain warmer than the ambient air for a longer time
than if the plume were not saturated, it will also remain less dense than the ambient air

for a longer time (Concepts I and 4). Therefore, a saturated plume will rise to a higher
elevation than an unsaturated plume.

For a saturated plume, the sooner it reaches saturation (i.e., the lower the elevation), then

the higher the plume will rise. That is, the sooner the plume reaches saturation, then the
sooner it will begin to cool with elevation at the saturated rate of 32°F per 1,000-feet
(cooling rate for dry air is 5.30F per 1,000-fee0. The high humidity of the ambient air
around Stennis Space Center (SSC) will allow the plume to become saturated earlier than if
the air were dry (low humidity). This is because when the hot plume mixes with humid

air, the resulting mixture will also have a high water vapor content, whereas mixing the

plume with dryer air would create a mixture with a lower water vapor content. The

1/ Humid air in the lropics typically contains up to 4%water vapor by weight.
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humid climate at SSC, therefore, favors high plume rises. 1/ Since the plume dispersion is

greater for higher plume rises, the humid climate at SSC aids in the dispersion.

The plume rise from Shuttle launches at KSC is fundamentally different than at SSC for

several reasons. During a Shuttle launch at KS(::, the launch pad is deluged with millions

of gallons of water just prior to launch. Additionally, water is sprayed onto the pad and

launch facility during the launch. The hot exhaust from the SRMs evaporates the pool of

water and the liquid droplets being sprayed onto the launch pad. Since evaporation is a

cooling process (Concept 3), the evaporating water dramatically cools the exhaust and

reduces its ability to rise.

Another major difference between the Shuttle exhaust plume and an ASRM exhaust

plume at SSC is that the majority of the Shuttle exhaust is emitted along the Shuttle flight

path in a long column. Since the Shuttle plume is very spread out, it mixes quickly with

the surrounding air and cools. Hume rise is not a major factor in the dispersion of a

Shuttle exhaust plume.

The plume rise process at the Utah test site is similar to the process at SSC in most respects.

The major difference between the Utah test site and SSC is the higher humidity at SSC

than at the Utah site. As demonstrated above, higher humidities allow the plume to reach

saturation at a lower level and thus increases the plume rise.

2) WN1 the rising plume create its own cumulus cloud and produce acid rain?

The rising exhaust plume will reach saturation on its way up and water vapor will

condense into tiny droplets. The plume will then consist of cloud droplets, exhaust gases,

and aluminum oxide particles. As the plume continues its assent, it may take on the

appearance of a cumulus cloud. As the plume reaches its final elevation, the temperature in

the plume may be below freezing z/and some of the water vapor may sublimate into ice

crystals. When the plume has risen to its final elevation a couple of minutes after firing,

the temperature will cease to drop and the condensation and sublimation processes will

stop. Observations of SRM exhaust plumes in Utah show that the cloud formation

processes stops after about five minutes.

Conditions could exist in the atmosphere around Mississippi which would allow the

plume to continue rising for several thousand feet more than has been predicted by

computer models. These are the same conditions which give rise to the naturally

occurring tall cumulus clouds. Droplet and ice crystal growth would then be able to

continue for several more minutes. However, unless the atmospheric conditions already

existed that would create a raining cumulus cloud, the exhaust plume-cloud would have

1/

2/

Exhaust plumes from SRM tests ill Utah typically rise to elevations of 10,000 feet or more.
However, if the humidity of the air near the ground at the Utah test site were as high as the air
at Stennis, the plumes could rise to even higher elevations.

Upper air temperature date from Slidell, MS indicate that freezing temperatures may occur at
about 10,000 feet year round.
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no continued source of saturated air and no continuous updraft after it reached its final

elevation. That is, if moisture-laden air is not already rising and forming raining cumulus
clouds, then after the short puff of hot moist air from an ASRM test rises off the ground,
cooler, non-buoyant air will move in to fill the void but will not rise. The ice crystals and

cloud droplets could not grow into precipitation-sized particles without a continued source

of rising saturated air (Concept 6). Since the time required for a droplet or an ice crystal to
grow into a precipitation-sized particle is so much longer than the length of the test firing

and the length of _ne the plume is rising, there would not be enough moisture supplied or
a long enough period for precipitation-sized drops or ice crystals to form. Even in the
humid environment of southern Mississippi, the exhaust plume alone could not produce
rain.

If the meteorological conditions already exist at the time of firing which would tend to
produce a raiaiag cloud, then formation of such a cloud could begin spontaneously with a
buoyantly rising mass of air. However, if raining cumulus clouds are forming or have the

potential to form naturally, then ASRM testing will not proceed. These conditions are
readily identified by meteorologists monitoring the weather. ASRM testing will only
proceed when the atmosphere cannot spontaneously produce raining cumulus clouds.
Under such test conditions, the exhaust plume would be both too small and last for too

short of a time to start the formation of a raining cumulus cloud. Therefore, the HC1 in the
plume would not be immediately rained to the ground.
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APPENDIX F

POTENTIAL ROLE OF ALUMINUM IN ALZHEIMER'S DISEASE

INTRODUCTION

Most scientists agree that there are neuropathological similarities between aluminum
neurotoxicity and Alzheimer's disease fAD). However, the contribution of environmental
exposure to aluminum in the development of Alzheimer's disease is not well understood
(Henderson and Finch 1989). This appendix summarizes the evidence and opinions
contained in the scientific literature regarding the role of aluminum in the etiology (i.e.,

cause or origin) of AD. This discussion is not intended to be a detmled presentation of the
entire database; rather, its purpose is to present a concise and factual interpretation of the

most accepted theories and observations regarding AD development.

A common disease of unknown origin, AD affects approximately 2 million Americans
with its incidence and prevalence increasing with age (Mozar et al. 1987). The prevalence

of severe dementia attributed to AD in persons over 65 years is estimated to be I to 6 percent
(Henderson and Finch 1989). Progressive symptoms of AD include the loss of cognitive

functions, learning ability, and memory; disorientation; an altered ability to

communicate; personality changes; and eventually death (Thienhaus et al. 1985). The
illness is irrevers_le and generally lasts about 7 years. The most common pathological

characteristic of AD is the development of neurofibrillary tangles and neuritic plaques in
certain regions of the brain associated with cognitive functions (i.e., hippocampus and

neocortex) (Henderson and Finch 1989). These tangles appear as large clusters of
unbranched fibrous structures that are twisted into a helix. These neurofibrillary tangles

and neuritic plaques, although conspicuous in AD patients, are also observed during the

normal human aging process and in a number of dementing disorders (Henderson and

Finch 1989).

RESEARCH OBSERVATIONS

The theory that aluminum has an etiological or pathogenic role in AD was originally
based on four observations: 1) certain epidemiological studies correlated the rates of AD
with aluminum concentrations in drinking water and soils; 2) native Chamorro
populations on Guam develop neurodegenerative diseases (with similar features as seen in
AD) and accumulate large amounts of aluminum in their neurofibrillary tangle-bearing
neurons; 3) aluminum was found in elevated concentrations in the neurofibrillary tangles

of AD patients; and 4) injection of high concentrations of aluminum salts into laboratory
animals produced neurofibrillary tangle-like structures, similar to those observed in AD
patients. These observations and studies related to alternative theories are discussed below.
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EPIDEMIOLOGICAL STUDIES

Several epidemiological studies (the science concerned with investigations into causes,

frequency, and distributions of disease in human populations) reported a correlation

between elevated levels of aluminum in drinking water and an increased incidence of AD,

relative to control populations. These control populations were selected from areas where

aluminum in drinking water was lower (Martyn et al. 1989;, Flaten, "I".I).1986). In one of

the more controversial studies, Martyn et al. (1989) reported that the risk of Alzheimer's

disease was 1.5 times higher in districts where the average aluminum concentration

exceeded 0.11 mg/1 than in districts where the drinking water concentrations were less

than 0.01 mg/]. Although this study did find a positive correlation, many research

scientists have reacted critically to the study, citing serious methodological flaws in the

selection of cases, and in the statistical analyses, uncertainty in actual aluminum water

concentrations, failure to demonstrate a dose-response relationship, and the drawing of

premature conclusions given the quality of their data (Ebrahim 1989; Schuph et al. 1989;

K]epak 1989). Indeed, the dmly doses of aluminum indicated by Martyn et al. (1989) are

relatively insignificant considering that the normal dally intakes of aluminum from the

diet and drinking water average between 5 mg and 50 mg (Martyn et al. 1989; Taylor

1984). Furthermore, cases of dementia were selected from CT scan records and are only

suggestive of Alzheimer's disease. Neuropathological examination is commonly regarded

as a requirement for a definitive diagnosis of AD (Martyn et al. 1989). As Martyn et al.

(1989) stated, studies have shown that diagnosis of AD based solely on clinical evaluation

is about 80 percent accurate when compared to neuropathological examination. However,

if 20 percent or more of the AD cases are misdiagnosed as a result of clinical evaluation, this

would have a dramatic impact on the results and conclusions of this study.

Guam Studies

Among the natives of the island of Guam, large numbers of individuals suffer from

amyotrophic lateral sclerosis (ALS) and/or Parkinson-dementia (PD). More recently, cases
with pure dementia and/or progressive supranuclear palsy (a Parkinson's disease-l_e

condition with paralysis of downward and upward gaze) have also been observed with

high prevalence among Guamanians. Importantly, the brains of affected natives show

extensive involvement with most of the neuropathologic lesions encountered among

patients with AD. Over 35 years of detailed epidemiologic studies on Guam have

consistently shown that whatever causes this unique epidemic of neurodegenerative

disease is related to unique local environmental factors, with little underlying influence of

genetic factors in Guamanians (Garruto and Yase 1986). Of importance to this discussion is

the observation that the brains of affected Guam natives accumulate 300 times the

aluminum concentration as do adjacent nontangled neurons or of those of normal subjects
(Pet et ai. 1982; 1986).

It is still unclear how aluminum accumulates within the brains of affected Guam natives,

nor is it known if aluminum represents a cause or effect of the neurologic disorders seen on

the island. In this regard, a potentially important observation has just been reported by
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Perl and coworkers (Perl et al. 1990; Steele et al. 1990). They have reported that Guamanian

patients who are early in the course of Parkinson-dementia show a profound deficit in

olfactory function. They also note that at autopsy Parkinson-dementia patients show

particularly severe damage to the olfactory bulbs and associated structures. They have

suggested that the cause of the Guam Parkinson-dementia epidemic may represent an

airborne factor rather than one which enters the brain via the blood stream through a

blood-brain barrier. This study suggests that airborne environmental factors may play a

more important role regarding the subsequent development of neurodegenerative diseases

than we have previously recognized.

Currently, an interesting hypothesis about the etiology of ALS and PD in Guam concerns

exposure to the highly toxic seeds of the false sago palm (Cycas ciminalis L), which was

used in food and traditional medicine until shortly after World War II (Spencer et al. 1987).

Cycas seeds contain a neurotoxlc amino acid (beta-N-methylamino-L-alanine or BMAA),

which has been demonstrated to induce motor neuron and behavioral dysfunctions and

neuropathological changes (Spencer et al. 1987). While this hypothesis has been challenged

(Garruto et al. 1989), it is undergoing intensive evaluation and offers a good explanation for

such factors as latency period, recent dietary changes, declining incidence of disease, and

geographical variations in disease rates. However, since Spencer's original publication,

many subsequent studies have been unable to reproduce his results. It is therefore unclear

whether BMAA represents a plausible explanation or is merely another of the many

theories of the development of AD.

Further study of .MS and PD in Guam natives may more clearly elucidate the role of

environmental and genetic factors in neurofibrillary tangle formation, such as that

observed in Alzheimer's disease (Perl and Good 1987). Whatever combination(s) of genetic

and environmental factors that may be respons_le for neurological disorders on Guam, it

requires a long time (around 20 years) for immigrants to develop such disorders. Genetics

may play a role in AD and PD, but whether it is a critical role and whether it has

anything to do with aluminum absorption remains unclear.

Elevated Aluminum Levels in AD Patients

Elevated aluminum concentrations have been observed within neurofibrillary tangle-

bearing neurons of deceased AD patients, while adjacent normal-appearing neurons, as

well as those from controls, were virtually free of aluminum (Pet and Brody 1980, Perl

and Pendelbury 1986). It is unclear whether aluminum accumulation occurs secondary to

neuronal injury or whether the neurotoxic effects of these minerals contribute to AD

pathology (Henderson and F'mch 1989; Crapper McLachlan et al. 1985). Several theories

exist to explain the preferential buildup of aluminum in neurofibrillary tangles, such as

transferring-mediated transport (movement via an iron-binding protein) and bundup of

amyloid proteins (Edwardson and Candy 1989). Nevertheless, this issue remains

unresolved. It is important to note that AD is strongly age-related and that the native

Guam population is especially sensitive to PD. Furthermore, aluminum is widely

distributed in the environment and ordinarily it does not pass either the intestinal or
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blood-brainbarrier. There is no knownbiologicalfunctionof aluminum. It is entirely

possible that the presence of aluminum in the tangled neurons in patients with AD and PD

may follow pathological degeneration of the neurons and, hence, represents an effect rather

than a cause of these disorders. It appears that as the body ages, levels of aluminum in the

brain slowly increase (Ganrot 1986), although in AD, the aluminum accumulation is

restricted to neurofibrillary tangles while adjacent neurons have normal aluminum

levels. This slow accumulation combined with an unknown predisposing factor has been

suggested as an explanation of the cause ofAV (Ganrot 1986). This hypothesis has yet to be

confirmed.

Aluminum-Induced Neuroflbrillary Tangles

Aluminum injected intracranially (directly into the brain) into experimental animals

induces development of neuroflbrfllary tangles and cognitive dysfunctions that are similar

to those seen in patients with AD (Edwardson and Candy 1989; Pet and Good 1987).

Cognitive dysfunctions are also observed. Furthermore, dialysis encephalopathy (unique

degeneration of the brain seen in dialysis patients) has been observed in some long-term

dialysis patients (patients with kidney failure) treated with aluminum-containing

phosphate binding gels ¢raylor 1984).

Unl_e AD, dialysis encephalopathy can be reversed by using chelating agents which bind

with metals like aluminum to enhance their removal from the body. Additionally,

twitching and seizures are common in dialysis encephalopathy, although not observed in

AD. AD has generally not been observed in patients with renal failure or end-stage renal

disease, despite unusually high brain levels of aluminum (Arieff et al. 1979; Burks et al.

1976). It appears that overall aluminum levels are higher within astrocytes and

endothelial cells in the cerebral cortex and aluminum is not being accumulated within the

neurons (Good and Perl 1988). Also, it is not known how long it takes to develop a

neuroFor_lary tangle, although it is thought to take years.

Alternative Theories of Aizheimer's Disease Etiology

The aluminum theory has received much attention, but it is only one of many plausible

theories of etiological causes of AD. Hypotheses that a genetic abnormality may be

responsible for the development of AD are supported by findings of an increased prevalence

of dementia among s_liugs of AD patients (Heyman et al. 1983), and neuropathological

simlarities between AD and trisomy 21, or Down's syndrome (Henderson and Finch

1989). Other studies of Alzheimer's disease report that only one member of identical twins

was affected with the disease, thus contradicting theories of a simple genetic familiar link.

Also, investigations aimed at identifying the gene respons_le for AD have been negative

(Henderson and Finch 1989).

Scientists have hypothesized that viruses may play a role in AD. The viral theory is

particularly inter-_ting because many viruses, such as herpes simplex virus, are known to

invade the central nervous system (Henderson and Finch 1989). Evidence of a causal role
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of viruses is at bestcircumstantialandmostlynegative. In fact, many leadlng researchers

have dismissed the viral theory.

As an additional theory, head injury has been associated with dementia and AD in latter

years of life, although this observation is somewhat controversial. Several small case-

control epidemiological studies have linked the development of AD to previous head

injuries in boxers (Henderson and Finch 1989). In contrast, one larger, well-designed

prospective study did not show a significant correlation.

SUMMARY OF THE POTENTIAL ROLE OF ALUMINUM

IN ALZHEIMER'S DISEASE

The cause or causes of Alzheimer's disease remains unknown. There is a lack of

compelling evidence to support the hypothesis of a direct causal role of aluminum or any

other genetic or environmental factors in the development of Alzheimer's disease. Like

most diseases, the cause or causes of AD may someday be determined to be a combination

or interaction of genetics and as-yet unidentified environmental factors.
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APPENDIX G

MEDICAL EXPERT CONSULTATION AND REVIEW

The text submitted to the medical experts for review was subsequently revised to reflect

their suggestions. This revised text appears in the document (see Section 5.0). Appendix B,
Potential Role of Aluminum in Alzheimer's Disease, referred to in the following letters, is

now Appendix F in this document.
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THE MOUNT SINAI MEDICAL CENTER

ONE GUSTAVE L LEVY PLACE ° NEW YORK, NY 10029-6574

Mount Sinai School of Medicine • The Mount Sinai Hospital

Daniel P. Perl, M.D.

Professorof Patholo_,y and Psychiatry

Director, Neuropatholo_' Division

Box 1134

RECEIVED

EBASCO ENVIRONMENTAL
BELLEVUE

May 22, 1990

William E. Maier

Toxicologist
Ebasco Environmental

10900 NE 8th Street

Bellevue, WA 98004

Dear Mr. Maier:

(212) 241-7371

I have now reviewed the revised version of Section 4.0 (Human Health Effects)

of the Supplemental Environmental Impact Statement of emissions from testing of the

NASA Advanced Solid Rocket Motor (ASRM). As requested, I offer the following
comments and suggestions:

The main body of the document (Sections 1.0-5.0) deals with many areas outside
my expertise but generally appears to reasonably summarize the situation. I did not

detect any serious problems with what is stated in this portion and cannot offer any
further suggestions or revisions.

My comments are directed primarily at Appendix B (The Potential Role of

Aluminum ha Alzheimer's Disease). Appendix B opens by stating that the contribution

of aluminum in the development of Alzheimer's disease is not well understood. I agree
with this assessment and have stated similar views in my own publications. For this

statement you cite Henderson and Finch, a reasonable review article covering a wide

range of topics. It was written by knowledgeable authors who are engaged in Alzheimer's
disease-related work. However, a second citation is provided which is from a letter to

the editor to the Lancet written by Professor Trevor Hughes of Oxford. You should be

aware that such letters to the editor are not subjected to peer review and can be

extremely variable in their accuracy and the nature of the views expressed. While
Professor Hughes holds a senior position in neuropathology in Great Britain, let me

point out that he has not engaged in research on aluminum or Alzheimer's disease, does

not regularly publish in this field, and is widely acknowledged to be a paid consultant

to the British aluminum industry. In the last few years his professional reputation has

been somewhat tarnished as a result of his vociferous and vehement denial, before the
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William E. Maier

May 22, 1990

Page 2

lay press and governmental agencies, of any role for aluminum in Alzheimer's disease.

For the reasons stated above, I suggest that you not use this Hughes reference.

On page B-2, line 1 the use of the word "pathological" is, I believe, incorrect and

"pathogenetic" should be substituted. More importantly, of the three observations listed,
mention is made of an association of rates of AD with aluminum concentrations in the

soil. I am not aware that anyone has ever made claims about an association of
Alzheimer's disease and soil aluminum content. I am not aware that this has ever been

studied. If you are referring to data from Guam soil then that is a different matter.

I personally believe that the data from Guam warrent inclusion as a 4th observation on

your list of supporting findings, namely, that the native Chamorro population on Guam

develop neurodegenerative diseases with many features of AID and also accumulate large

amounts of aluminum in their neurofibrillary tangle-bearing neurons.

On page B-4 you refer to the cycad hypothesis as a "leading" hypothesis.

Hypotheses "lead" only because they generate increasing amounts of supporting scientific

data, not because they attract increasing attention in the press. Since the publication of

Spencer's original article in Science (Science 237:517, 1987) claiming that BMAA causes

lower motor neuron and behavioral disfunction in monkeys, virtually all subsequent

published studies have been of a negative nature. You cite Garruto's challenge to the
hypothesis but I believe you should also be aware of and cite the recent report of Perry

and coworkers (J. Neurol. Sci. 94:173-180, 1989). They fed mice large amounts of

BMAA (15.5 gm/kg, a huge dose) over an 11 week period and did not encounter any

behavioral abnormalities or evidence of neuropathologic or neurochemical changes in the

group of treated animals. I am personally aware of one additional laboratory with

similar negative (though unpublished) results. It is noteworthy that even Spencer no

longer claims that BMAA is the neurotoxic factor of importance in cycad (see Science

248:144, 1990). Finally, Duncan, et al. (Neurology 40:767-772, 1990) found that most of

the BMAA was removed in the processing of cycad and that flour samples prepared on
Guam actually contained extremely low levels of the proposed toxin. As far as I am

concerned, cycad-related neurotoxins merely represents another hypothesis. I believe that

calling it a "leading" hypothesis, overstates the situation. If you wish to give a balanced

view of this subject, the above must be kept in mind.

In the last paragraph of page B-4 mention is made that elevated concentrations
of silicon were observed in neurofibrillary tangle-bearing neurons of AD victims and two

of our papers are cited. The data referred to relates to our original study published in

Science (Perl and Brody, 1970). In this article we did not claim that silicon was elevated

in tangle-bearing neurons. For a variety of technical reasons, silicon is very difficult to

detect with certainty using X-ray spectrometry and we never felt that the data related

to silicon were very compelling. Furthermore, subsequent laser microprobe mass analysis

studies (a much more sensitive and definitive method for detecting silicon in tissues) has

_3



William E. Maier
May 22, 1990
Page3

repeatedly failed to show elevated silicon concentrations in the neurofibrillary tangle-
bearing neurons of AD. I believe that in this context any reference to silicon
accumulation should be deleted.

I reject the subsequentargument on the top of page B-5 that since aluminum
accumulatesin some organs with increasing age, the increasesseen in AD may reflect

some non-specific aging change. First, the aluminum concentrations seen in the tangle-
bearing neurons of AD are 15 to 100 times higher than those of age-matched controls
or even the adjacent non-involved ceils of AD cases. Furthermore, a number of other

trace elements are increased in concentration in the organs of elderly individuals and yet

these elements are not encountered in the tangle-bearing neurons of AD. Why should
such a non-specific mechanism be applicable for just one element when it comes to the

damaging effects of Alzheimer's disease? Because science cannot currently explain the

specificity of an observation does not necessarily mean that it is therefore non-specific
in nature.

In the discussion of dialysis dementia mention is made that when neurofibrillary

tangles are present in this disease they are different from those seen in AD. Reference

is given to Monteagudo, et al. I am not familiar with this paper, nor do I recognize any
of authors' names. Unless this observation is based on a well documented scientific

study (which I doubt) then I think this material should not be included in the discussion.

In the last sentence of this paragraph (top of page B-6) I think you should say that the

patients may die before .... The concept invoked regarding the time element needed to

develop a neurofibrillary tangle is purely conjecture on my part and is not based on any
firm evidence.

Finally, the discussion on alternative etiologic hypotheses for Alzheimer's disease

(particularly the last paragraph, page B-7) seems to miss the point. No one knows what
causes Alzheimer's disease but it is unlikely that only one mechanism is involved

exclusively. I have argued that similar to most of the other chronic diseases of the

elderly, Alzheimer's disease very likely represents an interaction of both genetic factors

and a variety of environmental factors. Atherosclerosis leading to myocardial infarction

may be regarded as a model for this concept where the underlying factors are better

understood. For instance, familial hypercholesterolemia represents a strong genetic factor

which may lead to familial clusters of premature heart attacks yet, within these families,

the dangers of certain environmental factors, such as cigarette smoking or dietary excess,

may serve to further exacerbate the situation. I have enclosed a copy of a short

commentary that I recently wrote which discusses this concept further.

The final discussion related to evidence for underlying genetic factors appears to

assume that any positive evidence for such genetic factors serves to lessen the possibility

that environmental factors may play a role in the production of the disease. The
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concept that one hypothesis is mutually exclusive of: the others represents a poor
approachto a diseaselike Alzheimer's disease. As you sayin the final sentence,it may
be (in my belief, it is highly likely) that Alzheimer's diseaseis causedby an interaction
of both genetic and _environmentalfactors. If that concept is accepted then we must
begin to look for what possible factors may be implicated. As we agree, no specific
environmental have yet been clearly linked to the disease. Nevertheless, some factors
have attracted attention and have associateddata which would tend to support their
possiblecontribution to the process. Aluminum, among others, is in that category. Head
trauma would be another. Beyond that, we know very little. However I think that it
is naive to consider the cause of AD to related to genetic factors in the absence of any

supervening environmental ones. There are some neurogeneticists who would argue this

point, but many concede that there are very few purely genetic disorders, particularly
among the elderly.

I do believe that the comments of the outside consultants have made for a better

report and I hope that the above commentary has been helpful. If I can be of further
assistance to you, please let me know.

Sincerely,

Daniel P. Perl, M.D.

Professor of Pathology

and Psych/atry
Director, Neuropathology

Division

DPP/ems

Enclosure
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REVIEW AND CRITIQUE OF NASA SUPPLEMENT

TO THE FINAL ENVIRONMENTAL IMPACT STATEMENT

FOR THE SPACE SHUTTLE ADVANCED SOLID ROCKET MOTOR (ASRM) PROGRAM

Leonard T. Kurland, M.D., Dr.P.H.

Professor of Epidemiology, Mayo Clinic, Rochester, MN, 55905

If the conclusions of the F.E.I.S., that human health effects of the known pollutants released during

static testing (primarily HCI and aluminum oxide) are correct and that the ambient air concentrations outside

"the SSC buffer zone are below the recommended air quality standards or guidelines, there would be little

if any risk to humans, animals and plants from these tests. The infrequency and brevity of such testing and

the expectation of the design of the rocket test stand (to assure plume that will provide adequate dispersion

and an enormous dilution factor) as well as the choice of the most desirable and available atmospheric

conditions of temperature, humidity, wind speed and wind direction, would assure safe dilution and

dissemination of the known pollutants.

HCI alone, in the concentrations expected, does not provide any risk that this reviewer regards as

significant. The risks could be of greater concern if one were dealing with H:SO, since these might have

a greater biological effect. But H.,SO, is not the problem.

The primary concerns relate to the aluminum oxide-HCl mixture, the question of the chemical

composition of these products, and the effects on animals of aluminum compounds, particularly acid-coated

aluminum oxide. Aluminum oxide in pure form in the expected concentrations is regarded as quite safe;

if aluminum chloride is produced, there is greater uncertainty, since that compound in high concentrations

is reported as capable of entering the central nervous system through the fibers of the olfactory nerve.

However, studies of aluminum oxide in upper level airborne samples of the shuttle's plume indicate no

aluminum chloride. There is no comment regarding lower altitude sampling.

At the present t_me there is considerable research underway to determine whether an aluminum

compound is related to the cause of Alzheimer's disease (AD), the parkinsonism-dementia complex of Guam

(PDC), and other neurodegenerative diseases. We must first acknowledge that aluminum, although widely

present in the environment, does not ordinarily pass the intestinal barrier nor the blood-brain barrier.

Furthermore, its presence in the two conditions mentioned (AD and PDC) may follow degeneration of the

neurons due to other causes and, therefore, represent an effect of the degeneration rather than a cause of
these disorders.

Thus, an effort to determine whether aluminum chloride is produced and in what concentrations,
combinations, and forms (e.g., aerosols) it may be present at different locations, seems essential in order to

provide the needed reassurance as to public safety.

With regard to the question of the causes of AD and PDC, there is brief reference to genetics,

infections, trauma, and toxins, all of which are under intensive study. Genetic factors probably play a role

in some cases of AD, also in Parkinson's disease and amyotrophic lateral sclerosis (ALS) -- perhaps on the
order of 10% to 20% or even more. Features of all three of these conditions have been found in the PDC

of Guam, the disease which shows an even greater concentration of aluminum than do cases of AD. The

exact form and the mechanism whereby the dying or dead neurons accumulate aluminum is under study.

Aluminum speciation and the concentration of other elements, such as calcium and magnesium in the water

and soil, may influence the absorption and the distribution of aluminum to the central ner,'ous system. Low

calcium and magnesium reported on Guam have been found in only a single limited water supply. The soil

of many other locations (e.g., Jamaica) is probably higher, although solubilities may differ. In contrast to

the statement from F.E.I.S., calcium and magnesium levels in the soil, water and food intake of the

"Guamanian population are quite adequate. Although aluminum is excluded from entering the blood and
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brain normally, the role of reduced pH and the variability in speciation may influence the absorption of

aluminum and possibly affect its passage through the tissues. This is an area that requires further study.

So genetics may indeed play a role in AD and PDC, but whether it is a critical role and whether

it has anything to do with aluminum absorption remains uncertain. We cannot disregard the knowledge that

AD is strongly age-related and that the native population of Guam is especially predisposed to PDC, but

again the pathophysiologic mechanism is unknown.

There is little evidence that AD or PDC are disorders related to viral or other infections or are

post-infectious. The role of trauma in AD is controversial, but the only large prospective study (recently

completed) has not shown a significant correlation and that study is regarded by this reviewer as superior

in design to the several retrospective case-control studies (subject to serious recall bias) that have suggested

that prior head trauma was an etiologic (causative) factor. The role in PDC of neurotoxic amino acids from

the cycad seed and the role of receptor sites for such amino acids in AD is being explored intensively.

Although other toxins may contr_ute to the etiology of AD, for the present time we are obliged to consider

aluminum as a candidate toxin and try to evaluate its role. To do so, I shall comment on the points raised

in the Supplement as these relate to aluminum and its respective role in the aforementioned neurodegenera-
tive diseases.

In the article by Henderson and Fitch, the conclusion is reached that the role of aluminum has not

been resolved. About two-thirds of all dementia diagnosed in Rochester, Minnesota (and presumably in the

U.S.), is regarded as due to AD, which is characterized by neurofibrillary tangles and neuritic plaques (which

incidentally do not contain "infiammed or damaged nerves,") since an inflammatory process is not associated
with this condition.

The work of Martyn et al. on aluminum in various county water supplies in England and Wales is

compared to the use of CT scans and provides no evidence of an association with prevalence rates. This

indirect approach cannot be regarded as an accurate or complete assessment of the issue. This reviewer

would agree with the criticism of this study as noted by Hughes (1989), Ebrahim (1989), and others.

Furthermore, the normal daily intake of aluminum overrides the slight difference noted in the water supplies

studied by Martyn et al.

With regard to antacid and antipersperant use, there is no study that this reviewer is aware of that

convincingly shows an association of aluminum use and dementia.

The incidence of dialysis encephalopathy appears to be related to pH and the concentration of

aluminum ions in the dial)sate. Although neurons may not be affected in the acute stages of this illness,

it has been shown that aluminum may be present in the glial or supportive elements of the brain.

Aluminum accumulates in the damaged areas of the brain in AD and PDC, but whether aluminum

is the primary etiologic entity or is merely associated with something present previously that is the cause of

the neuronal degeneration remains to be clarified. The general tone of the Supplement is to dismiss

aluminum as causative in AD. The pathogenetic mechanism of aluminum is uncertain and will require

further elaboration before that position is justified; of course, the same can be said regarding the need for

further studies to _ that aluminum plays a primary etiologic role in AD.

However, Perl and Good have shown that very high concentrations of aluminum chloride applied

to nasal epithelium of rabbits resulted in the entry of aluminum compounds through the olfactory nerve and

.that adjacent areas of the brain which are analagous to those thought to be involved in early human AD

also contained increased aluminum. Guam PDC subjects show loss of neurons in the olfactory bulb and the
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loss of odor identification capabilities. We are exploring the possibility that suspected toxins may enter

through the olfactory rather than the gastrointestinal system.

This Supplem.ent appropriately indicates the lack of clear correlation data regarding dose, speciation,
or even of a mode Of exposure to aluminum in diseases where aluminum has been found. However, the

effect of HCI on the aluminum compounds in the plume should be reported. The concentrations described

for HCI and aluminum oxide (Table 4-1) are so low that these would appear to be of no significant risk to

iny population beyond the buffer zone.

Whether the brief periodic emissions of large quantities of aerosolized aluminum and HCI serve as

a significant health risk is a difficult point for me to respond to since the criteria for a specific

recommendation have not come to my attention. It would be helpful if populations known to have been

exposed at the approximate levels anticipated here could be followed and compared to similar populations

not known to have had such exposure. At the time there appears to have been no untoward effect of the

numerous rocket uses in the space shuttle program. Furthermore, at the concentrations described and for

the duration expected periodically (totalling no more than two to four hours annually), there would appear

to be no significant health risk to the population beyond the buffer zone.

In closing, I think it should be emphasized that the static tests will be infrequent, spaced weeks

or months apart, and that even the cumulative concentration of these compounds that may precipitate out

is likely to be exceedingly small. To this reviewer, it is unfortunate that a less controversial test site was

not chosen originally, such as immediately on the seacoast where prevailing winds would have blown the

plume out to sea and where any fallout of aluminum compounds would have had a tremendous water

dilution factor in the ocean. If the situation with respect to the compounds referred to earlier in this review

is not resolved, such a modification of the plan may prove to be worth considering. Nevertheless, for

adequate reassurance to the public, the absence of any effect of acid-coated aluminum oxide would be
further reassurance.

Finally, the summary statement as written should be modified:

On page 4-15, line 1, which reads, "Given the alternative theories described above," it should be

noted that these alternative theories of infection and trauma are not acceptable. Therefore, the summary

might best begin with the sentence, "There is a lack of compelling evidence .... " I agree with the final

two sentences of this paragraph, although, again, this is contingent on demonstration of lack of any
significant human effect of acid-coated aluminum oxides.

In the section of summary and conclusions, I would recommend the first sentence on page 4-16 be

modified after the word "effects" on line 2, to read, '... effects, and is present in the neurofibrillary tangles
of AD and PDC, a causal .... _ The sentence which follows introduces elemental aluminum for the first

time in this Supplement, and I am uncertain of its relevance at this point in the document.

...../

Leonard T. Kurland, lVI.D., Dr.P.H.



UNIVERSITY OF WASHINGTON

SEATTLE, WASHINGTON 98195

School of Public Health and Community Medicine
Department of Environmental Health, SC-34

April 27, 1990

Mr. William E. Maier
EBASCO ENVIRONMENTAL
10900 NE 8th Street

Bellevue, WA 98004-4405

Dear Mr. Maier:

I have reviewed the document "NASA: Supplement to the final
Environmental Impact Statement, Space Shuttle Advanced Solid Rocket
Motor Program, Part 4.0: Human Health Effects," and my comments are
listed below. Other minor comments or corrections were made directly on

the document, which is enclosed.

General comment: This document summarizes the possible health effects
of potentialexposure to HCI and aluminum generated by

ASRM testing.It isgenerally well written,though itcould
benefitfrom some rewording to eliminate repetitionsand
redundancy. Most sides of the differentissues are discussed,
though briefly,because of space limitations.However, in
certain instances, small sectionsshould be added and more
detailshould be given. I hope that,forthe sake ofcompleteness

and clarity,addition of one or two pages willnot cause any
problem. The part discussing HCI and HCI aerosols is the
weakest, which might be due to a relativelack ofinformation
on this topic.However, in my opinion,this sectionwould
benefit from some rewriting and the addition of more specific
details. The section discussing aluminum toxicity appears
more complete, though a few points could be added. Here,
however, the task of summarizing the amount of literature
available and the different views, is certainly a harder task. In

general, the document presents a reasonable and balanced
view of the potential scenario involving exposures to HC1 and
aluminum.

p. 4.4: Some further comments on the basis forthe choice ofthe 1.5

mg/m3 air standard are probably needed. In particular,what
were the arguments ofthe NRC Committee on Toxicology fora
24 h standard that is 10 times higher than the 3 minute
standard setby EPA?
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Table 4.1:

p. 4.6:

p. 4.6:

p. 4.7:

p. 4.8:

p. 4.8:

p. 4.9:

p. 4-10:

p. 4-11:

Concentration of HC1 (1 h, 20 km): Should this read 0.023
instead of 0.23?

Are there any other,more recent studies,on the effectsof
chronic HCI exposure in addition to that of Henderson and
Haggard (1943)?

How good isthe evidence ofa neutralizationofHCI by

ammonia present in the mouth and upper airways? Could this
ammonia content be altered (decreased)in particulardisease
conditionsor because of other factors(age,smoking habits,
etc.)?

The reference Thurston and Weldman (1987) is missing form
the bibliography.

Since from the USEPA document it appears that sulfuric acid
aerosols are toxic to adolescent asthmatics at concentrations as

low as 0.068 mg/m 3 (USEPA 1989), some quantitative
evaluation of the amount of HC1 aerosols formed, if any, the
amount of HC1 "potentially" formed, and the amount

eventually needed to cause adverse effects on human lungs
should also be included.

From my reading ot the Amdur and Chen (1983) paper, it
appears that there is no effect of Zn0 alone (p. 148 and p. 149).

Although aluminum oxide does not appear to have strong
fibrogeneticproperties,a case in the literaturesuggests that

aluminum oxide may lead to fibrosisof the lung. This is based
on the finding ofAl oxide in the lung of a aluminum smelter
worker who died from pulmunary insufficiencyand whose
postmortem confirmed the diagnosis of pulmonary fibrosis
(Gilks,B and Churg, A. Aluminum-induced pulmonary
fibrosis:do fibersplay a role?Am. Rev. Resp. Dis. 136: 177-179,
1987).

The factthat ASRM Test emissions are comprised exclusively
of nonfibrous aluminum oxide,should be further stressed.

Indeed, itseems clear that the speciationofalumina isof

utmost importance in the interpretationof epidemiological
studies both related to Alzheimer's disease and lung diseases,
because of theirdifferentbioavailabflitypotentialand
differential toxicity (see e.g. in lung, Dinman, 1988, op. cit.).

Another apparent flaw ofthe study of Martyn et al.was that

the source forcases for dementia was the centers carrying out
the computerized tomography (brain scan).To my knowledge,
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p. 4-11:

p. 4-12:

not being a neuropathologist,Alzheimer's disease would be
conclusivelydiagnosed only at autopsy. Clinicalexamination
would also require evidence of a deteriorationover time.

Within the epidemiologicalstudies,the results of case-control
studiescould alsobe mentioned. Most ofthose up to 1985 have

been summarized by Rocca, W.A., Amaducci, L.A. and
Schoenberg, B.S. Epidemiology of clinicallydiagnosed
Alzheimer's disease.Ann. Neurol. 19:415-424, 1986.

Unfortunately, these and others do not specificallyaddress the
hypothesis of an associationbetween aluminum and

Alzheimer's disease.One study (Borenstein Graves, A. A case
controlstudy of Alzheimer's disease.PhD. Thesis. University
ofWashington, Seattle,1988).found a low increased risk
associated with the use of AI containing antiperspirants and
antiacids,however, the validityof the response was judged
dubious by the author.

A leading hypothesis of etiologyof ALS-PD in Guam isnot even
mentioned. This involves consumption of seeds of a
plant,Cycas circinalis,which contain a neurotoxic aminoacid
(beta-N-methylamino-L-alanine; BMAA). BMAA has been
shown to induce a disease in cynomolgus monkeys with
features similar to ALS (Spencer P.S. et al.Guam amyotrophic

lateralsclerosis-parkinsonism-dementia linked to a plant
excitant neurotoxin. Science 237: 517-522, 1987). A similar

syndrome, known as lathyrism, has also been associated with
consumption of the chickling pea (lathyrus sativa) which
contains a neurotoxic aminoacid (beta-N-oxalylamino-L-
alanine; BOAA), similar to BMAA (Spencer et al. Lathyrism:
evidence for role of the neuroexdtatory aminoacid BOAA.

Lancet 2, 1066-1067, 1986). Although the hypothesis for ALS-PD
has been challenged (Garuto RM. et al. Cycads and ALS/PD.
Lancet 2, 1079, 1988; Garruto et al. 1989, op. cit.), it is still far
from being discarded, as it offers some good explanation for
issues such as latency period and changes in dietary practices
(see e.g. Deary, I.J. and Whalley, L.J. Recent research on the
causes of Alzheimer's disease. British Med. J. 297: 807-810,
1988).

Additional

Comment: An issue that is only briefly mentioned in the document but
that could be of importance in elucidating the possible role of
aluminum in Alzheimer's disease lies in its effects on the
blood brain barrier (BBB) (see Crapper McLacldan et al., 1989,
op. cit.) Indeed, aluminum has been shown to alter the BBB
function and therefore to enhance the transmembrane

diffusion of endogenous and/or exogenous compounds which
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might have neurotoxic properties(Banks, W.A. and Kestin,
A.J. Aluminum-induced neurotoxicity:alterations in
membrane function and the blood-brain barrier.Neurosci.

Biobehav. Rev. 13:4 7-53, 1989).On the other hand, aluminum
appears to have an inhibitoryeffectof no effecton saturable

transport systems (Banks and Kestin, 1989). This aspect of
alumimmYBBB interaction should be considered, in addition
to the suggested changes in BBB function that would facilitate
the uptake of aluminum in the brain.

the opportunity to review thisdocument.
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